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Research Summary:

Plasma-dynamic thrusters designed for high speed low thrust space missions, are
nonlinear distributed parameter systems with very complex dynamics. The main
objective of this study was to analyze MPD thrusters' controllability and observability
without the need to solve the engines governing partial differential equations. This
analysis falls into the category of stabilizability of distributed parameter systems (DPS),
which is the most challenging problem for the control community. During the three-
year period of this investigation, several new concepts were derived and developed.
Following is the highlights of the main accomplishments in stabilizability and
observability of the MPD thursters.

1. Integration of advancements in the mathematical theory of partial differential
equations, dynamical systems, and advanced feedback control theorems.

2. Derivation and application of Lyapunov theorems for the case of distributed
parameter systems.

3. Application of Lyapunov's stability theorems to MPD systems.

4. Derivation of the characteristics of a general, nonlinear hyperbolic systems
represented by partial differential equations, and their relations to controllability of
the MPD systems.

5. Stability analysis and stabilizability of MPD thrusters.

6. Controllability and observability of distributed parameter systems.

This research has a general focus on the analysis of the DPS, but the results at
every stage is implemented on an NfPD thruster model. Therefore, the new foundations
and theorems resulted from this study have potentials for applications in many other
distributed systems than MPD, such as flexible structures, jet engines, integration of
controls for frame vibration and combustion process in an aircraft engine, etc.
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CHAPTER 1 - INTRODUCTION

Distributed parameter systems (DPS), also regarded as infinite dimensional

systems, are often-described by a set of linear or nonlinear partial differential, integro-

differential or differential-delay equations. Conversely, lumped parameter or finite

dimensional systems are represented by a set of ordinary differential equations. For

distributed systems, state variables are functions of time and another set of parameters,

whereas lumped parameter systems are only dependent on time. In many physical

systems the states of DPS are functions of time and spatial coordinates.

In general, all physical systems are intrinsically distributed in nature. However, in

many instances the system's spatial energy distribution is sufficiently concentrated such

that an approximate lumped parameter description may be an "adequate" representation

for the system. On the other hand, the spatial energy distributions of many practical

systems are widely dispersed and require controls of some or all of the spatially

distributed states. In general, such systems have to be represented by distributed

parameter models. Typical examples of DPS are combustion processes in engines,

boilers, and furnaces; heat exchangers; distillation processes; nuclear and chemical

reactors; gas dynamic thrusters and lightly damped flexible structures. Another example

of DPS with a widely dispersed distribution of electro magnetic energy is a magneto-

plasma dynamic accelerator. Investigation of the dynamics of distributed parameter

models pertinent to magneto-plasma dynamic accelerators is of interest to the Air Force

for future space vehicles and has been one of the motivations for this research.

Often a nominal (approximate) model for a system is considered in order to

provide numerical estimates about the characteristics of DPS, as in determining the



system response to an excitation and/or design a control input to achieve a desired

system performance. These approximate models are often derived by means of some

modal reduction techniques. The most common methods for derivation of finite order

models are discretization and modal truncation. Due to the reduction of the system

order, some of the information about the dynamic characteristics of the system is

neglected. This implies that there will be an error signal between the exact and

approximate solutions, based on the unmodeled dynamics of the system. Usually, if an

upper bound for such approximations exists, then that bound grows with the reduction

of system order. The higher the approximation bound, the lower the precision in the

system representation. To increase accuracy, the number of discretized points (nodes)

needed may reach several hundred. Application of these large order models in control

design would require a large number of sensors and actuators, otherwise interferences o?

uncontrolled modes would affect the system performance. This condition is often

impractical for economical reasons.

One of the main concerns of control theory is whether or not a system is stable.

For finite dimensional systems, Lyapunov stability theory have become an important

vehicle in the.stability analysis of a system. This approach attempts to make statements

about a dynamic system's stability of motion without explicit knowledge of the solutions

to its governing equations. Although the development of Lyapunov's stability theory for

ordinary differential equations has been widely investigated, its application to solutions

of partial differential equations, namely distributed parameter systems, has been limited.

Stability results for distributed parameter systems have been derived based on spectral

analysis and frequency domain characteristics of the system. Such analysis provides

necessary conditions for stability, in contrast to the Lyapunov method that results in
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sufficient conditions. In order to obtain sufficient conditions for stability based on

spectral analysis of DPS, other system properties are required. Moreover, frequency

domain analysis of DPS is often used to provide an input-output type of stability which

do not necessarily imply internal stability of DPS. These requirements are in addition to

the complexities associated with the spectral analysis. In general, spectral analysis

requires an explicit knowledge of solutions to system equations. Furthermore,

approximate models cannot be used to imply sufficient conditions for stability of DPS.

Considering these issues indicates that the Lyapunov method may be a more suitable

alternative for stability analysis of DPS.

In cases where system performance is not satisfactory one needs to determine

whether the application of an external control input will provide the desired results. To

obtain such information, the system must be "observable", namely, one must be able to

estimate its characteristics from measurements of its states. Moreover, the system must

be "controllable". In qualitative terms, based on the knowledge obtained from

observations, one must be able to manipulate the system to accomplish a desired

performance. These concepts for finite dimensional linear time invariant systems have

been derived and are well known. Extension of these results to time variant and

nonlinear finite dimensional systems can be established in the local sense by use of

implicit function theorem. However, the technical complexity in dealing with

controllability and observability of DPS arises from the fundamental differences between

properties of finite and infinite dimensional spaces. Hence, the approximate models have

subtle shortcomings to answer questions about controllability and observability of DPS.

In cases where the system is not stable or asymptotically stable, one must know

how to make the system stable or asymptotically stable. This process, called
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stabilization, in turn depends on the system characteristics, i.e., whether or not it can be

"stabilized.4 ' Although this property for DPS is related to observability/controllability,

the relationship is not similar to the way these three properties are coupled in the finite

dimensional systems. Therefore, the approximate and reduced order models of DPS are

usually insufficient for stability analysis and the design of stabilizing controllers.

Control actions based on such models may have interactions with uncontrolled modes of

the system which may have adverse effects on stabilization of the system.

The phenomenon of excitation of unmodeled dynamics, or "spillover", is an

example of such adverse effects. Problems of this nature can be avoided either by means

of distributed, i.e., "body force" type control, or by finite order controls based on a

distributed model of the system. In applications of finite order (not spatially

distributed) controls where actuators are concentrated at certain finite number of

locations, stabilization of the system is not always guaranteed unless the points of

measurement and actuation of DPS are strategic points. Often, the boundary of DPS,

or parts of it, has strategic point properties. This leads to boundary control for

stabilization of DPS. These issues are the current research topics in the control area.

This study attempts to develop answers for these questions for the case of hyperbolic

and parabolic types. The following section describes some of the previous work in this

area.

Literature Review

The first significant work towards control of DPS was initiated by Butkovskii and

Lerner [1* Their work has been concentrated on the derivation of maximum principle
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applied to a class of DPS. Subsequently, [21 studied the optimal control problem of a

specific linear diffusion system. A complete description of all relevant issues involved in

modeling, stability, control and optimization of DPS was first reported by Wang 31.

The studies of distributed parameter systems, as systems of partial differential equations,

have been the result of the developments in the mathematical theory of partial

differential equations (PDE) and dynamical systems. In fact, the progress made in the

developments related to DPS are due to the concurrence of three fields of science:

controls, PDE and dynamical systems. The theory of PDE, which was developed to deal

with problems and phenomenon of continua, is associated with the names of many great

mathematicians. More modern and abstract approaches to this field are due to

Hadamard, Lax, Sobolev and Hilbert [4-9]. The theory of dynamical systems was

initiated by the pioneering work of Zubov [10]. He tried to make mathematical

abstraction of physical systems, called dynamical systems, in order to distinguish general

properties of these systems, such as stability and asymptotic behavior. With this

categorization he could extend stability results of Lyapunov [11] to systems of PDE.

Sufficient conditions for the stability of equilibrium solutions for a system of PDE were

derived by Massera [12]. The application of Lyapunov stability theorem based on the

work of Zubov has been investigated by several authors. Hsu '131 applied this theory to

a nuclear reactor system. Wang [31 considered the stability of those evolution equations

whose solutions involve a semigroup property. There are also many other applications

which utilize Lyapunov functions directly to study special problems '14,15,161. A

completely rigorous and abstract approach to the theory of Lyapunov stability for

* Argument of [ denotes the reference number.
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infinite dimensional systems was studied by [171 and [181. Stability study of an

equilibrium solution of a magneto-plasma dynamic (MPD) system for the special case,

where the plasma equilibrium velocity is zero was addressed in [19]. In cases where a

system does not have an equilibrium state, the invariance principle provides information

about its asymptotic behavior. The invariance principle was first introduced by LaSalle

[201 for finite dimensional systems. The generalization of this principle for abstract

dynamical systems has been accomplished by Hale [21]. Applications and contributions

in the asymptotic behavior of an abstract d)..amical system have been investigated by

[22-26).

Other developments in the theory of DPS have come from advances in the control

theory applied to DPS. Historically, for finite dimensional systems, the concept of

controllability was introduced in the early 1960s by Kalman [27,28]. The concept of

controllability was extended to DPS initially by Fattorini [20-31], who investigated

controllability analysis of a heat equation. Subsequently, Triggiani [35] has developed

controllability and observability concepts for general DPS. Applications of these results

to the hyperbolic boundary value problems are reported in [36-40]. Other applications

of observability analysis for DPS of parabolic type are reported by '41,431. In the

process of the evolution of controllability concepts for DPS, the theory of time optimal

control was extended to DPS. This theory was developed based on investigation of

many researchers, especially the work of Butkovskii and Lions [44,45]. Lions' work is a

landmark in this category. Also, with more emphasis being placed on hyperbolic

boundary value problems, investigations of [46,47] can be recalled. Moreover, due to the

nature of DPS, the optimal control problem can be defined in terms of optimal locations

for sensors and actuators. Measurements at certain points in the spatial domain of the
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system may yield more information about the system than other points. Since the

number of sensors is generally governed by economical considerations, it is desirable to

locate the given number of measurement sensors at points that lead to the best estimates

of the system. The existence theorem for the solution of this optimal location problem

was proven by Bensoussan [48]. An algorithm for derivation of suboptimal sensor

locations based on eigenfunction expansion representation of linear DPS was developed

by Yu and Seinfeld [491. The dual problem of optimal actuator location for DPS has

been investigated by Amouroux and Barbary [50].

Often, a control problem is concerned with stabilization as well as the

aforementioned performance optimization. Research on the problem of stabilizability in

infinite dimensional spaces was first initiated by Slemrod [51,521. His work was

primarily motivated by hyperbolic systems, and he used a generalization of the

invariance principle to study stabilization of infinite dimensional systems in Hilbert

spaces. This problem was also treated using the spectral theory of unbounded operators

for stabilization of systems in Banach spaces by Triggiani [53]. Stabilization of DPS

based on [52,531 has been applied to several classes of systems [54-56].

Finite order control problems for the stabilization of DPS has been studied by

Ba!as and Slemrod [57-59]. Balas [57] studied a flexible structure with pointwise sensor

and actuator to control a modal truncated model of the system, based on the original

DPS. The truncated model is not always controllable and/or observable. It is only

controllable when an estimate is determined to prevent spillover problems. This

estimate is related to the initial perturbations. In [58,50] boundary control of the wave

equation and a flexible beam subject to the boundary controls were investigated,

respectively.
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This study considers stability of two general models of DPS based on Lyapunov's

direct methods. The controllability and observability concepts based on abstract

dynamical system are analyzed ana their relations to stabilization by distributed and

finite order controllers are derived. Although the basics of stabilization by spectral

theory of unbounded operator is described, the fundamental approach for stabilization is

based on (521 and the invariance principle.
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CHAPTER 2 - MATHEMATICAL PRELIMINARIES

This chapter provides the mathematical bases and preliminaries for the following

chapters of this study to provide the reader with a quick review of the required

definitions and theorems. Additional details on these topics can be found in references

[60-65).

Vector Spaces

Definition 2.1. A real (or complex) vector space is a set X such that:

1. given any x,yeX, there is an element x + y in X satisfying

(a) x +y =y +x, \-/,yfX

(b) x + (y+z) = (x+y) + z, Yx, y,zEX

(c) there is an element OeX such that 0 + x = x, -*EX

(d) given an xeX, there is an element -x in X such that x + (-x) = 0;

2. given any xEX and any number aEF (F being a real or complex field), there is an

element cixeX such that

(e) a(!3x) = (c@)x, for any ck, 3EF and xEX

(f) (a+,3)x = ax + 3 x, -/ci, 3eF and xcX

(g) c(x+y) = ax + aiy, /aeF and x,yeX

(h) lx = x, \-AEX
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Definition 2.2. A subset W of vector space X is a subspace if it is a vector space with the

operations of addition and multiplication defined on X.

Definition 2.3. A sit of vectors {X1 , x2, ... , x.} are linearly dependent if there exists a

set of scalars %z, a 2, ..., aeF not all zero, such that ajx + a 2x 2 + + Ux, = 0.

If no such set of scalars exists, then xj, x2, ... , x, are linearly independent.

Definition 2.4. A linear combination of a finite set of vectors xj, x2 , ... , xn is a vector of

the form acx + a 2x 2 + "'" + ax, where ei's e F.

Definition 2.5. Let W be any set of vectors in a vector space X. The set of all linear

combinations of elements of W is called the subspace spanned (generated) by W.

Definition 2.6. A set of {xI, x2 , ... , xn} is called a finite basis for a vector space X if it is

linearly independent and it spans X.

Definition 2.7. A vector space is said to be n-dimensional if it has a finite basis

consisting of n elements. A vector space with no finite basis is said to be infinite

dimensional. For example, the space of continuous functions on the domain ia,b" (called

C[a,bl) is infinite dimensional.

Normed Linear Spaces

Definition 2.8. Let X be a vector space over a real or complex field F. A norm on X,

denoted by Il. 1i, is a real-valued function on X with the following properties:

a) lxI > 0 if x 0 and IIxl = 0 for x = 0, for all xEX

b) l xll =vbavbllxll, for arF
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c) Ix + y 11< IIx II + Ily 11, for x and yEX

Norms can be constructed in different ways.

if x = (xi vb i=1,2...,n.}

then for infinite dimensional space X, n -- oc, the following is defined:

epnorm 11" lip = t xiP  < oc, andP > 1

1/2

e2 norm _1 l l1=x, <=0

_ i1" Io= Sup vb xi vb
i

L 2 norm If IlL, = vb f(t) vb 2 dt , f(t)efunctional space x

Lp, Lo, norm are defined correspondingly.

Definition 2.9. A linear vector space with a norm 11. lI is called a normed linear space

and is denoted by (X, 11 ll ).

For example, the sets of real (and complex) numbers R n (and C') are linear

normed spaces with norm:

'1/2

llxII = vbxi vb 2  /xER' (or xeC n , respectively)

The previously mentioned vector space Cta,b] of continuous functions on the interval

[a,b] can be turned into a normed linear space by defining the norm

lf 11 = f vb f(t)vb2 dt -AE C[a,b]

or
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1IfI = Sup {vbf(t)vb: a<t~b} -Ate C[a, b]

where each norm can be proven to satisfy the properties (a), (b), (c) in definition 2.8.

Lemma 2.1. For vectors x = {x1, ... , x } and y = {y, ... , Yn It

vb xi- vb2 < vbxivb I vbyivb =lix ily j- i-I l 1P i-I P

where F denotes complex conjugate of y. This inequality is called Cauchy-Schwartz

inequality.

This same inequality is true for infinite dimensional spaces

b b b
vb f f(t) g(M) dt vb2 < (f vb f(t) vb2 dt) (f vbg(t) vb2 dt)

aa a

< 1f(t) 1P12 lg(t) 1P

Definition 2.10. A subset S of a normed linear space X is called bounded if there is a

number M such that 1ix II < M for all xeS.

Definition 2.11. A map F: X--*Y between two normed linear spaces (X, l1-b ) and

(Y, II. I) is said to be continuous at x.eX if for a given E > 0 if there exists a 6 > 0

(6 = 6(e,xo)) such that

IF(x) - F(x0 ) Ii <o E

whenever 11x - xO 1 < J.

Definition 2.12. A sequence {x,} in a normed linear space (X, 11" 1 ) converges to x0 if

lim Ilxrl - x. i = 0 .
n-.00

Continuity and convergence are closely related and a map F : X -- Y is continuous if

and only if (iff)
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lim F(x.) = F( lim x,)

Example 2.1. The sequence {ff(t)}, where f, = e-t and f, e C[O, 11, converges to

0 for t 0 0

F(t) =
1 for t = 0

in both L, and L2 norms. It is clear that F(t) 0 C[0,lJ. If one considers F1 (t) = 0 for

all t (0,11, then {f,(t)} converges to Fl(t)EC[0,1 in the L2 norm but {f}j does not

converge to FI(t) in L. norm.

Definition 2.13: Open and Closed Set. A set A in a normed linear space X is closed if

all convergent sequences in A have their limit points in A.

A set A is open if its algebraic complement is closed. Alternatively, a set A is open

if for any point xeA, there is e > 0, such that the set {y: I1x-y II <E} is wholly contained

in A. The closure of a set can be formed by adding all limit points of sequences in A to

A, and is denoted by A.

Definition 2.14: Cauchy Sequence. A sequence {xn} of elements in a normed linear

space (X, 11" I ) is termed Cauchy if

ilxn -xm l --- 0 asm, n ---.

Definition 2.15. A normed linear space is complete if every Cauchy sequence defined on

that space converges to a limit point in the space. A complete normed linear space is a

Banach space.

Theorem 2.1. The space C[a,b] with norm 11f 1= Sup {vb f(t) vb : a <t <b} is

complete.
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The space of continuous function with the square integral norm (L2 ) is an

incomplete space. This fact is clear from example 2.1. The space of L2 1a,b) (square

integrable functionsl provides the completion of CIa,b ] with respect to L2 norm. Thus,

L2 [a, bj contains all functions which are the limits of continuous functions in the sense of

mean square (L2 ) convergence. This property of L2 [a,b] will be more elaborated under

the topic of distributions and Sobolev spaces.

Definition 2.16. A subspace S of a normed linear space X is called dense in X if its

closure with respect to the norm is equal to X.

Equivalent Norms

Definition 2.17. Let 11. 11 and II 112 be two different norms on the same vector space X.

A norm 11111 is called equivalent to 11. 112 if there are positive numbers a and b such that

a 11x 1I1, :! fX2 11 < b llx 11, , VxEX

It is easy to show that if II. 11, is equivalent to II. 112, then I1. 112 is equivalent to 11-II1I

with bound coefficients replaced by b-1 and a- '.

Theorem 2.2. If a sequence converges with respect to one norm, then it converges with

respect to any norm equivalent to it.

Corollary 2.1. If a space is complete with respect to one norm, then it is complete with

respect to any norm equivalent to it.

Theorem 2.3. In a finite dimensional space, all norms are equivalent.

Operators on Vector Spaces
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Definition 2.18. Let X and Y be subsets of two vector spaces M and N, respectively. An

operator, mapping or transformation T : X -- Y is a rule which associates any given xEX

with an element of Y and is denoted by Tx or T(x). This mapping may also be implied

by x vb- Tx, which implies "x is mapped into Tx".

The sets X and Y are called the domain and range of T, respectively. The vector

Tx is called the image of x under T.

Definition 2.19. A mapping T: X -X, where X is a subset of a normed linear space N,

is called a contraction mapping if there is a positive number ce < 1 such that

ITx - Ty I1 ce IIx - y 11 for all x,yfX

Theorem 2.4. If T: X -- X is a contraction mapping of a closed subset X of a Banach

space, then there is exactly one xEX such that Tx = x. The point x in this

transformation is called the fixed point. This theorem gives proof of existence and

uniqueness and a computational method for finding the solution (fixed point) of

differential and/or integral equations.

Compactness

A bounded region in a finite dimensional space has a finite volume. Successive

applications of an operator T to a point provides a sequence of infinite points. Since

these infinite number of points are contained in a bounded volume, then the sequence of

operation converges to a limit point, which is the fixed point of T. But in an infinite

dimensional space, even a bounded region is so large, due to the infinite number of

dimensions into which it extends, that a sequence can wander through the region

indefinitely. Therefore, the sequence never converges and never reaches a fixed point. In
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infinite dimensional spaces compactness is used to define boundedness.

Definition 2.20. A subset S of a normed linear space X is compact if every infinite

sequence of elements of S has a sub-sequence which converges to an element of S.

In finite dimensional spaces, closed and bounded sets are the same as compact sets.

However, closed and boundedness are not sufficient to give compactness in the infinite

dimensional spaces.

Linear Transformations

Definition 2.21. A linear transformation, T, from a linear space X to a linear space Y

over F is a map T : X - Y, such that

T(cix + 3y) = aTx + 3Ty

for all x,yeX.

Definition 2.22. T : X -* Y, were X and Y are normed linear spaces, is said to be

bounded if

1lTx 11 < K 11x ll

for some constatit K > 0 and all xEX.

Definition 2.23. If T is a bounded linear transformation between two normed linear

spaces X and Y, one can define 1IT 11 by

( i1 x ll
IT I = Sup I 1x l

xX

Definition 2.24. If X and Y are normed linear spaces, then one can define the space of

all bounded linear transformations T : X - Y by .0 (X,Y) with the norm defined in



-20-

Definition 2.23.

Definition 2.25. If T is a linear operator (transformation) defined on its domain

D(T) C X with range R(T) C Y, then the graph G(T) is the set

G(T) =--{(x, Tx), xeD(T), TxER(T)}

in the product space X X Y. The linear operator T is closed if its graph G(T) is a linear

subspace of XXY.

Definition 2.26. A linear transformation over pace X, which maps it into F, is called a

linear functional

T:X--F

Theorem 2.5 (Hahn-Banach Theorem). Every continuous linear functional h : M -- F

defined on a linear subspace M of a normed linear space X can be extended to a

continuous linear functional H on all of X with preservation of norm.

A useful corollary of this theorem, which will be used in the controllability and

observability analysis of the system, is given as follows:

Corollary 2.2. If E is an arbitrary subset of a normed linear space X, then span E = X if

and only if the zero functional is the only functional which vanishes on all of E.

Definition 2.27. Dual (conjugate) space of a normed linear space X is the normed linear

s :'ce of all bounded linear functionals on X. One can write this space as Y (X,F) or X*.

Definition 2.28: Inner Product. An inner product on a linear space H defined over the

complex or real field F is a map < "," >: H XH -F such that
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(a) <CkX +, 3y, z> = Ce<x,z> + 3<y,z>

(b) <,x>

(c) <x,x> > 0 and <x,y> = 0 if x = 0

for x, y, z, c H, and a, eF.

A linear space H with an inner product <, > is called an inner product space.

Definition 2.29. A Hilbert space is an inner product space, which is complete as a

normed linear space with the norm defined by inner product.

IlIx 1 =< x,x>

Definition 2.30. An orthonormal space of a separable Hilbert space, H, is maximal if

H = {0 }. Then for any xEH, the Fourier expansion is

00
x <fi 0, >x

i-I

One of the most important properties of a Hilbert space is the simple

representation of its dual. The following theorems illustrates this representation.

Theorem 2.6: (Riesz Representation Theorem). Every bounded )inear functional in a

Hilbert space H can be written in the form <x,yo> where yoEH is uniquely determined

from T(x).

T(x) = <x,yo >, '-/xEH

Theorem 2.7: (Lax-Milgram Theorem). Let H be a Hilbert space and let B(x,y) be a

complex valued functional defined on the product Hilbert space H X H, satisfying the

following conditions:
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i. Sesqui-linearity, i.e.,

B ((Coixi + C2x2 ),Y) = -- cB(xl,y) + C2B(x 2,y)

and

B (x,(f3iY, + 32Y2)) = , B(x, y) + 32 B(x1 ,Y2 )

where fl,/32 are complex conjugates of 31, 32 respectively.

ii. Boundedness, i.e., there exists a positive constant -f such that

vbB(x,y)vb < -1ix ll" Ily 11

iii. Positivity, i.e., there exists a positive constant 6 such that

S(x,x) _ S Ix IF2

Then there exists a uniquely determined bounded linear operator SE.Y(H,H) with a

bounded linear inverse S- 1 .'(H,H) such that

<x,y> = B(x,Sy); iIS II < 1/6

and

<x,S-'y:> = B(x,y); IIS- 1 I1 <

This theorem can be used in relation with equivalent inner products and norms.

Theorem 2.8. Two inner products defined on a real linear vector space H are equivalent

if and only if there exists a symmetric bounded positive definite linear operator

SEY(H,H) such that

<Xy>2 = <x,Sy>l

where the indices identify the inner product in Hilbert spaces 1 and 2. Because

B(x,y) = <.x,Sy> 1 , it can be concluded that <x,y> 2 is sesqui-linear, bounded and

positive due to the properties of S, and that <x,y> 2 satisfies all the properties of an

inner product. Hence the norms defined by these inner products are equivalent. The
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application of equivalent norms yields the derivation of the stability properties of the

general operators (A) in differential equations of the form

- = Ax,

from the knowledge of the properties of the operator A. The concept of equivalent inner

products can be extended to complex Hilbert spaces.

Definition 2.31. Let A E Y (H), then the adjoint operator A* is defined by

<Ax,y> = <x,A*y> for all x, y E H.

This suggests that for bounded operator A, the adjoint is a transpose of its complex

conjugate. For unbounded operators, where x E D(A) and y e D(A*) with D(A) being

dense in H, it can be shown that if A is closed, then D(A*) is dense in H and A* is

closed. Hence

A** =A

For example, if

Au=du du
Au- du d E H=L 2

( 0 ,T), with u(O) -0

T du
<Au,v> =f d v(t) dt

0

T dv
- u(T) v(T) - f u(t) - dt

then A*u = du
dt

where u, and E H with u(T) =0 .

Distributions

Definition 2.32. The support of a function f:R-*C is the set {x:f(x) 0 0}, written as
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supp(f). A function has bounded support if there exists numbers a,b such that

supp(f) C [ab].

Definition 2.33. Letting n2 be an open set in R', then the function f: P. - C is n times

continuously differentialable if its first n derivatives exist and are continuous. The

function f is denoted by feCn(Q). f is smooth or infinitely differentiable if f 6 C'. The

set Coa(fl) consists of functions in C(Q7), which vanish outside a compact subset Q ' C Q.

Definition 2.34. A test function is a smooth R - C function with bounded support.

The set of all test functions is called 2.

Definition 2.35. A linear functional on 2 is a map f: C such that

f(a¢ + bVk) = a f(O) + bf(t) for all a,bEC and 6, VA2.

Definition 2.36. A sequence of test functions Ca converges to a limit point 0 in 2, if (i)

there is an interval [a,b] containing supp(O) and supp(¢n) for all n, and (ii) for any k,

¢4nk(x) --. ¢(k(x) as n -- oc, uniformly for xe[a,b], where ¢{k) is the k-th derivative of 6.

Definition 2.37. A functional f on 2(0) is continuous if it maps every convergent

sequence in ?(fQ) into a convergent sequence in C; that is, f(6o) - f(o) whenever

b in 0. A continuous linear functional on 2 is called a distribution, namely

f = f (x) O(x) dx = <f,o> = f(6) iE (1)

The set of all distribution in the compact support F2 is denoted by "'(.).

Definition 2.38. Two distributions f and g are equal on (a,b) if <f,o> = <g,o> for all

dk such that supp(4) C (a, b).
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The delta distribution, 6, is defined as

O> = 0(o) for all € in 2.

Definition 2.39. The derivative of a distribution f is a distribution f defined by

<e€,O> = -<f,€'> for all dEe.

Similarly, higher order derivatives can be written as

I ~<Di~f,6> -_ (-1)n <.f,Dn¢>.

A formal partial differential operator defined in an open subset S of R' can be

shown in abbreviation by

T aj (x) o
vbJvb < m

where the highest order of differentiation is m, symbol J denotes an index, i.e., a k-tuple,

k
J (Jl, j 2, ,Jk), and vbJvb = ji k,

i-I

ak

&XVI a9 J2 . .. J k

The adjoint operator of r is

7*= a [aj(x) (9j
vbJvb < m

Definition 2.40. Let 7 be a formal partial differential operator defined in open set 2 6ER

with real coefficients aj(x) e C'(Q). If f4 '(n), then -f will denote a distribution defined

by the following equation

(7f) (6) = f(7*0), f

Sobolev Spaces

Definition 2.41. Letting Q be an open subset of R' and let K be a non-negative integer,
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then

(i) the set of all distribution fE@' such that jf eL 2 (fl) for all vbJvb < K will be

denoted by 1iK((1 ). This space is called Sobolev space, which is an inner product

space mapping each pair f,g

<f,g>K= f &f(x) bdg(x) dx
vbJvb < K ()

The norm based on this inner product is

If K = (<f,f 'K ) 
/ 2

(ii) the space HK(fj) is the closure of CK(fj) in the above norm, similar to the space

H* (fl) = L2( P), which is the closure of C(f2) in 11 - 6 norm.

(iii) the symbol HK(f2) will denote the closure of CK(j2) in If- IiK norm.

Lemma 2.2: Letting 11 be an open set in R', then the space HK(fl) of the preceding

definition is a complete Hilbert space and the space HK(fl) is a closed subspace of HK(f).

In addition,

H°(Q) C H°(fQ) = L2(n)

H K+1 (Q) C HK (n) K > 0

HK+l(fQ) C HK(Q) K > 0

Theorem 2.9. Letting f0 be a bounded open set in R' and '9Q, the boundary of P, be a

smooth surface with no interior point to F2(= F) f), then Hm(F)CcK(F!), where m

and K are integers with m > K + n/2.

Theorem 2.10. If fQ is as given in the preceding theorem, then the mapping

Hm (fl) -Hm-l(11) is compact.
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CHAPTER 3 - DYNAMICAL SYSTEMS AND LYAPUNOV THEOREMS

Distributed Parameter System (DPS)

In this section DPS and lumped parameter systems are compared and general

properties of these systems are described. The dynamics of distributed systems are often

expressed by a set of partial differential, integral or differential delay equations, as

opposed to lumped parameter systems which are described by a set of ordinary

differential equations. For distributed systems, the state variables are functions of time

and another set of parameters, whereas lumped parameter systems are only dependent

on time. In many physical systems the states of DPS are functions of time and spatial

coordinates. Fig. 3.1 illustrates the analogy between DPS and lumped parameter

systems. In this figure, at each instance of time, the state of a lumped parameter system

is veR 2 . However, the state of DPS is a vector function of one spatial coordinate, x.

Therefore, each of the two states of the DPS, shown in Fig. 3.1, consists of infinite points

and belongs to an infinite dimensional functional space. This example reveals the

infinite dimensional nature of the DPS as opposed to finite dimensionality of lumped

parameter systems.

Semigroups and Abstract Evolution Equations

The simplest finite dimensional systems are linear autonomous systems which can

be formulated by

--Av veRa (3-1)

v(to) =v"

where v: [o,TI -- R' is the solution of the system. The operator (matrix) A is bounded,

Ae'(R',R'). Solution of the homogeneous system (3-1) is
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*At

oVO

0/

V0 * V (t) s V0 (x)-. v(tx)

v (t) . At V0  4 (t-jwl 3  v(t~x) a T(t) v J T(t-S)Bu

Figure 3.1 Comparison of finite and infinite dimensional systems.
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V r eAtvo

which satisfies

- (eAtv,,) =AeAtvo -Av

where eAt is the transition matrix defined by,

eA t =f I + At + A t + .... + Ant +"""
2! n!

Usually, external effects such as body forces can be included in the above system

representation by a vector valued function g: tE[0,T] -R'

v - Av + g(t) v(O) = v o  (3-2)

The solution is then

t

v(t) = eAtvo + f eA (t - ') g(s)ds (3-3)
0

The excitation term g(t) can be represented in terms of a vector valued (input) function

u(t): [0,T] -- Rm with g(t) = Bu(t) where B: m -R.

In the case of distributed parameter systems, the mathematical description is

usually given by a set of partial differential equations. In order to generalize the results

from the finite-dimensional systems, the set of partial differential equations can be

transformed into an abstract form of equations (3-1) and (3-2).

S= Av veV ([o, ej EuJ (3-4)

v(to) = Vo

This formulation of the system is called the evolution or the state space equation. The

state space of the system V belongs to some Banach space or more commonly, to a

Hilbert space. The evolution operator A in equation (3-4) is applied to the v and it may

be a bounded or unbounded operator. An example of bounded operator is Fredholm
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integral operator for which,

3

Av = f a(x, )v( ,t)d (3-5)

where a(x,) is the kernel of the operation. The unbounded operator is often in the form

of a derivative action which could map a bounded variable into an unbounded one. For

example, the wave equation

L C2 Y- + f(x,t) (3-6)

can be written as

Dv%

0t %V 2

2 -v + f(x,t) . (3-7)

Then the evolution operator A would be

0 1

C C 2
(') 0ax2

which is an unbounded operator because the - is unbounded.

The solution of the evolution equation (3-4) for infinite dimensional systems can be

given as

v(t,x) = T(t) v0  (3-8)

where the operator T(t) (strongly continuous semigroup or group) is an abstraction of

operator eAt with similar properties [661, namely:

(a) v(0;vo) = v. (i.e., at time 0, initial state is v,)
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(b) v(t I + t2 ; V) = v (t; v(t 2 ; Vo)) = v (t; v(tl; Vo))

(c) v(t,v.) is continuous in t and v. (i.e., if one of them changes slightly, then the

solution should not be changed drastically).

Based on abstraction of the above conditions, the following definition can be given:

Definition 3.1. A Co (strongly continuous) semigroup is an operator T(t): R' -. (V),

where .' (V) is the space of all bounded operators on V into V. The following properties

characterize a semigroup:

(a) T() = I

(b) T(t + t2 ) = T(t1 )T(t2 ) tI, t2 > 0

(c) lim T(t)v = v, for all veV (i.e., T is strongly continuous at t = 0).

The operator T(t) will be defined as a C. - group provided t E (-0<o, 0).

Fig. 3.1 depicts the similarity between eA t and T(t) in deriving the finite and

infinite dimensional systems from an initial state v to a final state v(t). However, the

operator T(t) is applied to the state v instead of mere multiplication. Two examples of

semigroups are given here. These semigroups are generated from the evolution equations

below.

For the diffusion process in heat or mass transfer, the governing dynamics is given

by

&V 2a 2 V
- = -a + f(x,t) , v(o,x) - vo(x) (3-9)

The evolution operator A in this case is
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A=a2 ()

By applying the Laplace transform to the homogeneous evolution equation, one can

determine the semigroup T(t) generated by this system. If (s,x) is a Laplace transform

of v(t,x), then

s - Vo = a2 2-- ° (3-10)

s~a-a
s - as 2 2'

ox
if vh is the green's function for the system

= f vh(s, ) vo(x- ) d f vh ,(x-) vo( ) d (3-11)
-00 -00

sv - a2 v = (x)OIX2

Vh (+00) = Vh (00) =0

V's Yb xvb

Vh = C [e, f vh dx 0

lia _2 49vh 2b+ c bv - V vb x vb

urn 2 -" -- "+  C e -b vb

=+2a2 c a + 2a - 1
aa

1
Cff

2a 79s

Vh - exp vbxvb (3-12)

ro eq2aVis (a - a t

From equation (3-11), can be calculated
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- exp vb x- vb V,()d (3-13)

V-== " I f exp -- vbx-vb Vo()d00 a

v = f d~vo( ). -1  1 /
v= f d -Sexp -- vb x- vb

The inverse Laplace transform is [671:

17 {7ex ex -_,\2/4t) (3-14)

Therefore, for X = vb x- vb
a

1 o [(x_ )21
V a exp 2 vo( ) d (3-15)2a %/Trt -"0 4at

Hence, T(t) will be

T(t) 1 exp [ -)2 ] d (3-16)

The semigroup for the first order wave equation can be derived in a similar way:

v 0 f
'I -t - +f , v(o, x) = Vo(X) (3-17)

A = -u '-)
0x

Similar calculations results in the following form for the state of the system v at

time t:

v(t,x) = T(t) vo(x) = vo(x-ut) (3-18)

Theorem 3.1. Letting T(t) be a semigroup on R' to 2 (V), where V is a Banach Space,

then
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(a) IiT(t) I is bounded on every compact interval of [0,oc] such that lIT(t)II < Me --t for

some M, (.

(b) T(t) is strongly continuous, on [0, ool.

The proof of this theorem is given in [661.

Definition 3.2. The infinitesimal generator of a strongly continuous semigroup T(t) is

defined by A when

Av = uri (T(t)v-v)}
I A -oI It 1

vED(A)CV

It should be noted that in general, A will be an unbounded operator. The operator A is

closed, i.e., its range and domain converge to some element of their respective spaces. In

addition, the closure of the D(A) covers the space V, namely it is dense in V.

Theorem 3.2. Let T(t) be a strongly continuous semigroup on a Banach space V with

infinitesimal generator A. If v. e D(A), then

(a) T(t)v. ED(A) for t > 0

d

(b) -Tt (T(t)vo) = A(T(t)v,) = T(t)Avo, t > 0

(c) A- (T(t)v,) = An(T(t)vo) = T(t)A' vo for v, eD(A'); t > 0
dt"

t

(d) T(t)vo - v -- -f T(s)Av o ds;T > 0
0

(e) D(A') is dense in V for n = 1, 2, and A is closed.

The proof is given in [621.
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For finite dimensional systems, the Laplace transform of eA l is L(eAt) (SI-A)- 1. This

can be generalized to semigroups by the following proposition:

Proposition 3.1. If T(t) is a strongly continuous semigroup with infinitesimal generator

A, then Re(s) > w for se p(A). Where, p(A) is defined as the resolvent set of A, namely

p(A) = {S:(SI-A) - l c.? (V); bounded linear operator on V

Note that w is given by

;a = Inf I. 1iT(t) 11 < Me't; M, e}

where Inf is greatest lower bound of the set of w's.

Theorem 3.3: (Hille-Yoshida Theorem). If

(a) A is a closed linear operator on V such that D(A) is dense in V,

(b) (I-A) - 1 exists for some wER and for every XeR such that X > w,

(c) < (M,-A)-X <>
X-W'

then A generates a strongly continuous semigroup T(t) with the norm liT(t) 11 < Me - t.

The proof of this theorem is given by [68].

Definition 3.3. Considering the strongly continuous semigroup T(t) with

1iT(t) 11 < Me -"t  M > 0, .' < c

if w = 0, then 1iT(t) II < M and T(t) is called an equi-bounded semi-group with t > 0.

Definition 3.4. For equi-bounded semigroup when M = 1,
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11T~t) 11 < 1, t > 0,

therefore T(t) is called contraction semigroup.

Contraction semigroups are very important in the stability theory of semigroups.

The contraction semigroups are closely related to the dissipative property of the

infinitesimal generator A of the semigroup T. To study the dissipative property of an

operator A, one needs to apply inner products. Hence, the Hilbert space would be a

natural space for the study of the dissipative property of operators.

Definition 3.5. An operator A defined on D(A) C H (Hilbert Space) is dissipative if

Re<Av,v>:5 0 for every veD(A).

Theorem 3.4: (Phillips and Lumer Theorem). Letting A be a linear operator with

domain D(A) and range of A, both of which are in the Hilbert Space H where D(A) = H

(i.e., the domain of A denses in H), then A generates a contraction semigroup on H if

and only if A is dissipative with respect to the inner product defined on H and there

exists a X > 0 such that R(XI - A) = H.

The proof of this theorem is given in [681. It should be mentioned that if the

hypothesis of the above theorem is true, then one can derive

1(NI-A) - '

for all X > 0. Hence, the Hille-Yoshida theorem could be used. By setting M = 1, = 0

one can find

IIT(t) ii <Met - 1

which indicates that the operator A generates a contraction semigroup.

Corollary 3.1. If A is a closed linear operator with dense domain in H, then A generates
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a contraction semigroup if and only if A and A* are dissipative. Note that A* is the

adjoint operator of A, given by:

- <x,Ay> = <A*x,y>

Thus far, the theory has covered the properties of an operator A with regard to

semigroups. In general, the operator A of an evolution equation can represent a

hyperbolic or parabolic problem. The specific problem which will be considered in

Chapter 5 is a hyperbolic system of the class

=Lv ve(L 2(f),En )

The states, v, form an Euchidean vector space. The vector valued function v, where each

element of the vector forms a function which belongs to an infinite dimensional Hilbert

space, is defined on one dimensional spatial region (domain) Q2 = xe[O,f]. The operator L

is similar to the operator A previously discussed and is unbounded with the specific

form:

Lv =A - + Bv

It is possible to establish the solution of this system of evolution equations in terms

of semigroups. The solutions of this general system, depending on the conditions

specified by dimension of E', can result in either groups or semigroups i69].

Dynamical Systems

The physical systems are modeled by the evolution equation of integro-differential

structure. It is often difficult to investigate properties of the motion of a physical system

based on its solution derived from a specific condition. To avoid this obstacle in the

evaluation of selected properties of the system, such as boundedness, stability and

asymptotic behavior, an abstraction of the physical systems is considered. This
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abstraction of mathematical models for the evolution of physical systems was first

proposed by Zubov [10] as dynamical systems. The significance of such systems is that

Lyapunov stability theorems can be applied to them.

Definition 3.8. A dynamical system on a metric space V is a mapping u: R" XV - V

such that

(i) u(',v) R' ---- V is continuous (right continuous at t = 0)

(ii) u(t,-) : V -- V is continuous,

(iii) u(o,v) = v,

(iv) u(t+sv) = u(t, u(s,v)),

for all t, sER+, vEV.

For a dynamical system on a metric space V, the mapping u(',v): R+ - V is

called the motion starting from vEV.

From the properties of a Co-semigroup in definition 3.1, it is clear that every Co-

semigroup T(t) determines a dynamical system and vice versa.

Definition 3.7: (Linear dynamical systems). A dynamical system T(t) on a Banach space

V is linear if T(t)f.2(V,V) for every tER + , i.e., T(t) is a bounded linear operator on V.

From the study of semigroups it can be shown that for a linear dynamical system there

exists real numbers M, ,, M > 1 and wER such that

1iT(t) 1 < Met V-/tER

A dynamical system may also be defined on a finite dimensional state space of a

finite order system. In this case, the linear dynamical system is denoted by the

semigroup exp(At). Therefore, the generation of finite and infinite dimensional
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dynamical systems can be investigated by using the theorems regarding the generation of

semigroups and from the equivalency between semigroups and dynamical systems.

Some definitiohs related to the motion of a dynamical system are provided below

to enhance the analysis of the general motion of a system.

Definition 3.8. An orbit (positive orbit) y+(vo) in V is the union of all solutions of the

dynamical system T(t) for all times t > o, i.e.,

-y+(v) = U [T(t)vo]
t)>O

This definition represents a specific trajectory of the system for all times t > o.

Definition 3.9. If T(t) is a dynamical system on V, then the set lICV is called a positive

invariant under T(t), where for every vEI there exists a T(t)vell for all teR+. The set

H(,), which is positive invariant under T(t), is called an invariant set. Clearly, an

invariant set R exists if and only if the positive orbit "y(v) is bounded. In that case, I(v)

covers y(v); therefore, [l(v) can be chosen as any bounded set that covers "I(v). In a

study of asymptotic behavior of the motion of a dynamical system as t -- it is often of

interest to find the smallest subset of [1(v) such that it has the same properties as Hl.

The task of finding this smallest subset could be achieved by considering a sequence of

projections on [I. This leads to a limit set, namely, the smallest set of invariant sets.

Therefore, this process would become a basis for the definition of a positive limit set

below.

Definition 3.10. If for every vEV there exists a set S7(v) such that as t,-- c, then

T(t.)v -* 1(v), that set is called a positive limit set. Alternatively, it can be shown that
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f2(v)-" n [Cf' U T(t)v] = n, [Ce-f(T(t)v)]
rtR~ t 2 r TER

where CG mean the closure of the set. Fig. 3.1 shows the schematic of invariant sets and

limit sets for finite dimensional systems in V R2 and an infinite dimensional system in

V -- ([o,,e, )

V *At
5

a) invariant set M ifn V a R2

v1 (t,oJ

v (td)

I v 2 (tO) I
arnO gui

d(Vo, N) a 6 d(V, K) C c

b) Invariant set 14 in V a L2 ([o,.J], E2 )

Figure 3.2 Invariant sets of finite and infinite dimensional systems.
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From the definition of limit set it is clear that P.(v) C C-rY(v). ks mentioned

earlier, if y(v) is bounded, then [1(v) exists for finite and infinite dimensional systems.

For finite dimensional dynamical systems, the boundedness of y(v) would be sufficient to

guarantee the existence of the limit set (2(v) as a limit set of the invariant set l(v).

However, for infinite dimensional dynamicai systems, mere boundedness of ,(v) would

not be sufficient for the existence of (2(v). In this case, the limit set (-(v) is nonempty if

-y(v) is compact (precompact if V is complete). More specifically, this can be stated in

the form of the following theorem:

Theorem 3.5. If V is complete and (v) is precompact, then (2(v) is nonempty, compact,

connected and invariant, and T(t)v--Q(v) as t--oo. In addition, if T(t)v---11 CV as

t-*oo, then fl(v) CCeH1 [26]. 01

Although most of the aforementioned materials can immediately be used to cover

the invariance principle, this discussion will be continued after the presentation of the

Lyapunov stability results. Some of the preliminary concepts and definitions which are

instrumental in Lyapunov's direct method are provided in the section below.

Definition 3.11. For a dynamical system {T(t)}t> o on a metric space V, the state ve is

called the equilibrium state if T(t) ve = ve for all tER + . In the framework of limit sets

il(ve) = {ve}.

Definition 3.12. Letting {T(t)}t> o be a dynamical system on a metric space V, the

continuous functional Y::V---R is called a Lyapunov functional for {T(t)}t> on V if

. < 0 for every veV. The function .:V-R is defined by
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lim inf I [.Z(T(t)v) - 2(v)]
t-*o' t

From this definition, it is clear that & does not need to be continuous and in this case, is

taken as the right derivative of 2.

Theorem 3.8. If {T(t)}t> is a dynamical system on metric space V and .2: V -R is

Lyapunov functional for all T(t)vEV for t(0,co), then

(i) .2(T(t)v) is non-increasing with

t

2(T(t)v) = (v) + f .(T(r)v)dr -/te[0, oc) (3-19)
0

(ii) In addition, if .'(v) -a.(v) for some e > o, then

2(T(t)v) e _eOt2(v). (3-20)

Proof:

Part (i) - Since 2(T(t)v) is absolutely continuous from the extended fundamental

theorem of calculus, then equation (3-19) will be derived with its integration defined in

the sense of Lebesgue. Therefore,

t

2(T(t)v) - .Z(v) = f i(T(r)v) dr < 0
0

P (T(t)v) :.5'(v) (3-21)

Part (ii)-

t t
2(v) - .Z(T(t)v) = f -,'(T(r)v) d- > f a .2(T(.)v) d7

0 0

From equation (3-21)
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Y(T(t)v) _Y£(T~r)v) '/r [0, tl

Y(v) - Y(T (t)v) ! at Y(T (t)v)

S .2(v) (1 + at) 2(T(t)v)

Dividing t by n and applying the same inequality for duration of t/n results in

£o(v) _ (1 + at/n) Y(T(t/n)v) 2! (1 + ct/n)2 .?(T(2t/n)v)

or

Y(v) (1 + at/n)" Y(T(t)v).

As the number of time divisions approaches infinity, then the

lim (1 + at/n) n = eat

Hence

£'(T(t)v) _ eOt Y'(v). 0

If the Lyapunov functional Y is defined on some subset GCO instead of V, the subset G

must contain the positive orbit of the system -(v); namely, G must be an invariant set.

Lyapunov's Direct Method

The importance of the Lyapunov stability method when using Lyapunov

functionals is to make statements about the stability of a dynamical system. In the

dynamical system (T(t)}t>o, one must know the characteristics of the mapping T(t)v or

the trajectory of the system. The Lyapunov approach is based on making statements

about the system characteristic by showing non-increasing property of a Lyapunov

functional .2'(T(t)v). This process does not require explicit apriori knowledge of the

T(t)v. In this section, preliminary concepts and related definitions and theorems of

Lyapunov stability are given.

Definition 3.13. For a metric space V with the metric d(vl,V2), where vt,v 2 EV, the
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distance of a point v1 from a set K CV is defined as:

d(v,,K) = infd(v1 ,v) #v, eV and vEK.
VEK

If one knows the "distance" between a point and a set in a metric space, then the

stability in the sense of Lyapunov can be determined.

Definition 3.14: (Stability of a motion). A particular motion of a dynamical system

(T(t)}t>o is stable if for every E > 0 there exists 6(E) > 0 such that d(v1 ,v 2) < 6 implies

d(T(t)v,, T(t)v2 ) < f for every vI, v2 eV and teR . The motion T(')v, : R' - V is

called asymptotically stable if it is stable and there exists 6 > 0, such that d(vl,v 2 ) < 3

implies that d(T(t)v,, T(t)v2) -- 0 as t -oo for every vI, v2EV. The motion

T(')vl :R' - V is called exponentially stable if it is stable and there exists 6 > 0,

a(6) > 0, and M(b) <c c, such that d(v,,v 2 ) <6 implies

d(T(t)vl, T(t)v2) < Me-*td(v,v 2 ) for every v1 , v2 eV and tER + .

Definition 3.15: (Stability of a set). A set G in metric space V of a dynamical system

{T(t)}t>0 is stable if for every e > o there exists 3(e) > 0 such that d(v, G) < 6 implies

d(T(t)v, G) < e for all teR + and veV. The set G is called asymptotically stable if it is

stable and if there exists 6 > o such that d(v, G) < 6 implies that d(T(t)v, G) - 0 as

t - cc for all vEV. The set G is exponentially stable if it is stable and if there exists

6 > 0 such that d(T(t)v,G) Me-'td(v,G) for some ce(b) > 0 and M(6) < c and for all

vEV.

Clearly, if the equilibrium state Ve exists for a dynamical system, then the stability

of equilibrium can be regarded as the stability of the set {(T(t)ve)} = {ve}. The

following theorem gives the stability conditions for equilibrium based on Lyapunov

functional approach:
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Theorem 3.7. The equilibrium state of a dynamical system {T(t)}t>. is stable on the set

of all states v with d(V,Ve) < r and r > 0, if there exists a Lyapunov functional Y on the

set G

G = {V: d(v,ve) < r},

such that

Y _ Y(ve) + f(d(v,ve))

The functional f(-) is a monotone function, f(-): [0,r) ---* R' with f(O) = 0.

In addition if .- '(v) <- g[d(v,ve)] for all veG and some monotone function

g(') : [O,r) -* R', g(0) = 0, then the equilibrium state is asymptotically stable. The

proof of this theorem is presented in Appendix A. 0

An extension of this theorem for dynamical systems can be given accordingly in

the space of perturbed states from the equilibrium, namely, r.

Theorem 3.8. An equilibrium state of a dynamical system is stable with respect to a

metric d if there exists a Lyapunov functional .Y on the set G.= {eV d( ,0) r},

where " = (v-ve)O" (space of perturbation) and Y satisfies the following conditions:

(i) Y is continuous and positive definite with respect to d(- ,0) on the G C V.

(ii) -s- is negative semidefinite. Proof is by a restriction of theorem 3.7.

Theorem 3.9. An equilibrium state of a dynamical system is asymptotically stable with

respect to a metric d if there exists a Lyapunov functional Y with the conditions given

in theorem (3.8), as well as Y(d( ,0)) - 0 as t - +oc. Proof is provided by theorem

3.8 and definition 3.15
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Lyapunov's Method for Stability of Linear Systems

Consider the abstract linear evolution equation of the previous section:

v = Av v(O) = v., (3-4)

where the operation A generates a semigroup T(t) on Banach Space V. One can define a

stronger criterion for the stability of this system by defining the notion of exponential

stability.

Definition 3.16. The system with the above evolution equation (3-4) is exponentially

stable if for a given w there exists

IIT(t), 11 Me - wt , t > 0.

Note that exponential stability implies asymptotic stability but the converse is not

always true.

Theorem 3.10. Letting operator A in the evolution equation (3-4) be generator of a

semigroup T(t), then the null solution of (3-4) is asymptotically stable if there exists a

Lyapunov functional L(v) such that L(v) > 0 and L(v) < -- 1 11v I for veD(A).

As addressed in the Lax-Milgram theorem (2.7), if the 11. 1I is a Hilbert norm with

D(A) = H, then any Lyapunov functional with bilinear form L: (HXH) -- R can be

made into an inner product of the form L : (v X w) - <v, Sw>, where S is -ymmetric

real bounded operator.

Hence, an equivalent form can be defined lIv 16 = <v, v> 2 = <v, Sv> and

KVV>< 11v 1,< O v >.

By this equivalence relationship, the existence of a Lyapunov functional would

result in the existence of an operator S with the aforementioned properties. The
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resulting Lyapunov functional, by hypothesis, satisfies

L(v) = L(v,v) = <v, Sv>.

Lv) = lrn {L(T(t)v, T(t)v) - L(v,v) 'It

= lim {L((T(t) + I)v, (T(t) -I)v lt= 2L(v,Av) =2<v,SAv> =2<v,Av>2

L(v) = 2<v,Av> 2  2 - iv 112 < - iv ly1

In addition,

X<v,v> 2 - <Av,v> 2 = <(XI - A)v,v> 2 :! 11 (XI-A)v (6 1iv 16

or

-.Av, v>1

<v,v> 2 X - <V, V>2 2 (I-A)l lv I

where the hypothesis -AV'v>2 < -"Y.
<v,v> 2  - 2

1I(XI-A) 112 X 1
<X + I_ _.

2c

Using the Hille-Yoshida theorem, this relation illustrates that operator A is the generator

of a semigroup T(t) such that

lIT(t) 11 < Me 2-

which is a condition for exponential stability.

The Invariance Principle and Asymptotic Behavior

The Invariance Principle provides information about the asymptotic behavior of
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motions as t - 00, whether or not an equilibrium exists.

As shown in theorem (3-5), if the positive orbit -y(v) is precompact in a complete

state space V, there-exists a limit set fQ(v) such that the motion of the dynamical system

at infinity will approach it. The method used to locate this limit set in the absence of

explicit knowledge about the motion of the dynamical system {T(t)}t>0 is provided by

LaSalle's Invariance Principle (211.

Theorem 3.11: (Invariance Principle). If {T(t)}t>0 is a dynamical system on a metric

space V and there exists a continuous Lyapunov functional .2': V - R on a set G C V

such that .0 < -W(v) for all vcG, where W:0 R' is a positive lower semi-

continuous and y(v) C G, then Q(v) M' . The set M' is the largest invariant subset of

the set M 1 ,

={veGI Iv==}

In addition, if V is complete and -y(v) is precompact (compact), then T(t)v - M' as

t -- ±0-. As shown later in this manuscript, this theorem will be used to derive

stabilizability conditions. The proof of this theorem is given in Appendix B. C

Stability from Spectral Method

Another alternative theorem for stability analysis of dynamical systems originates

from the spectral properties of the evolution operators for these systems. One of the

major insufficiencies in the application of the spectral method, as opposed to Lyapunov

method, is the restriction of the former to linear dynamical systems. For infinite

dimensional systems, spectral analysis gives the necessary conditions, whereas

Lyapunov-type analysis provides sufficient conditions for the stability of the system.
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For finite dimensional linear dynamical systems, the spectrum of the evolution

matrix A consists of a finite number of eigenvalues X (point spectrum). The system is

stable if and only if no eigenvalue of the system has a positive real part, i.e.,

(a) Sup Re(X) < 0 Xeo(A)

The system is asymptotically stable if and only if

(b) Sup Re(,) < 0 Xca(A)

and it is exponentially stable if

(c) Sup Re(X) < - for some 8 > 0 and Xea(A) .

For inanite dimensional systems with the evolution equation (3-4), the spectral analysis

would give the following three types of spectrum:

(i) point spectrum 0p (A), which is the set

0p (A) = { X : (I-A)-' does not exist }
(ii) residual spectrum o-R(A), which is the set

caR(A) = { X : Range (I-A) is not dense in state space V }
(iii) continuous spectrum cac(A), which is the set

( = : Range (NI-A) is not continuous

Requirements (a), (b), (c) provide necessary conditions for the types of stability under

consideration. To relate these conditions to sufficiency conditions, one can define:

=Sup {Re N: X feoA), aIA) = rp(A) fl R(A) n c (A)

This number is called the lower index of stability. The upper index of stability is

defined as [53]
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W - inf I w : 1iT~t) 11 < Me' t

where T(t) is the semigroup generated by the system of equation (3-4). In general, is

less than 7. However, the condition where these two indices are equal is called

"spectrum-determined growth assumption." Under this assumption, conditions (a), (b),

(c) will be necessary and sufficient conditions for their respective forms of stability. The

spectrum-determined growth assumption is true when the semigroup T(t) is compact

[54J. It is clear that the compactness of the semigroup T(t) is directly equivalent to the

compactness of positive orbit of dynamical systems. Therefore, the compactness

condition is a common necessity in both spectral and Lyapunov stability analysis.

However, spectral analysis is not directly applicable to nonlinear systems unless the

system is linearized and the analysis is performed in the local sense.
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CHAPTER 4 - APPLICATION OF LYAPUNOV'S STABILITY TO

MAGNETO-PLASMA DYNAMIC SYSTEMS

Motivation to Study MPD System

Recent increases in space missions and the construction of the space station has

attracted attention to new alternatives to chemical propulsion systems. One such system

is categorized and known as the electrical propulsion engine. In general, electric rockets

should be able to develop considerably higher specific impulses than chemical or nuclear

ones. However, this gain in specific impulse requires massive energy conversion

mechanisms. To avoid this, the electrical rockets generally provide lower thrust for

navigation in low gravitational fields.

The propellant of an electrical rocket consists of either charged particles,

accelerated by electrostatic forces, or an electrical conducting fluid (plasma) accelerated

by electromagnetic and/or pressure forces.

In the present work, the modeling and analysis of steady magneto-gas-dynamic

flow accelerators, among other categories of electromagnetic accelerators, are considered.

The study of MPD stability has been divided into two parts. In the first, addressed in

the present chapter, the stability of wave motion due to the combination of an external

(applied) magnetic field and induced electro-magnetic field on the plasma, perturbed

from rest condition, has been investigated. The second part, addressed in the following

chapter, includes a study of the stability of wave motion when the flow is perturbed

from a non-zero velocity equilibrium state.

MPD System Model
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The plasma dynamic equations for a magneto-plasma dynamic system are listed in

Appendix C in their general form. These equations consist of Maxwell's equation, Ohm's

law, conservation of electric charge, equation of state and a set of mass, momentum and

energy equations [70]. It has been assumed that the plasma is originally at rest with

pressure PO, temperature To, and density po with a uniform external magnetic field Ho

present, but no applied electrical field.

If the plasma is perturbed by a small disturbance, then the state of the system is a

combination of equilibrium and perturbed states, hence the instantaneous pressure,

temperature, density, electric and magnetic fields and current density can be written as

P = Po + P (x,t)

T T o + T'(x, t)

P +p+(x,t)

E --i E,(x,t) + Ey(x,t) + k E1 (x,t)

J -i J (x, t) + j Jy (x, t) + k Jz (x, t) .

In the case of a neutral plasma, i.e., Pe = 0, the number of ions and electrons per volume

of plasma are nearly equal. The application of perturbations results in a set of linearized

governing dynamic equations of perturbed states [70]. Following the modeling results

presented in Appendix C, and considering the fact that 6h- -0, it is then

possible to distinguish between two modes of wave propagation, the transverse mode (z-

direction) and the longitudinal mode (x-y direction).

(i) Transverse Mode. The equations governing the transverse mode are:
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az--=AZ, Z [h,, WIT ,  o <x <e, t>o (4-1)

A V2 92 (4-2)

and. Vx x -&X2=

where v and Vx V - H. The parameter Vx is defined as the x-
'79e V PO

component of Alfven wave speed [70].

(ii) Longitudinal Mode. The state equations for this mode can be reduced to

(5 =AZ, Z= 1 h, v, u,, T"O T Zt0 43
az = A I z= [h U ", T T0 < X se , > o (4-3)

a a

I- a, Hx-a -H -- 0 0

Vx2 8 82

H.9x o X2

SVy2  4 8 2

Hy 0 -0--- -RTo - RTo - (4-5)Hyx 3Ox (j Ox

0 0 00 2

0 0 R a 0 K 0
C, ax 170C7 7;Fx"

where p" P', T"- T V-y =V Pe Hy. The parameter Vy is defined as
pO To' PO

the y-component of the Alfven wave speed.

Lyapunov's Functional and Stability Analysis
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In this section, the Lyapunov functional approach is applied to each mode of the

plasma dynamics. The stability results are derived and discussed.

(i) For transverse mode, equation (4-1), the boundary conditions are

Z(o,t) = 0, Z(e,t) = 0, Z(x,0) = Zo E L2([0,t'j,E 2 ) (4-6)

In order to apply the Lyapunov stability theorem to the equation of motion for the

transverse mode, one should first investigate whether this system generates a semigroup;

namely, whether the wave propagation in the transverse direction represents a

dynamical system. One way to study this property is to use the Corollary of the

Phillips-Lumer theorem, for which the adjoint operator must be derived. The domain of

operator A in (4-2), D(A) was defined as

D(A) {(hzlw): (h,,w) E H2 n Ho X H2 2l H41.

The variables h, and w each belong to a set of twice differentiable functions in L2 (x), for

which the first derivative in L2 (x) exists on the boundary 31l(x=O,. x-e) and aF is a

compact support of functions (h.,w). The set of functions in this domain, D(A), are

dense in the state space defined by the norms H0° X Ho. The assignment of this normed

space is related to the choice of proper space for the generation of dynamical system and

stability results. Therefore, the inner product defined on V = H' )< Ho is <',->v
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e PH H(. a,(-) v
<u,A>v.= f [u,,u 2J v2 [1- d. (4-7)V [ H 0( ) v '

[vH O9v, + tx ox 2

f=1 Ui2] 2'V 9V1d

e
=L-'Ulavl I -H , oJoe + f aijviUldX + Hx ulv2  f Hv 239u, dx

0 0

V X2 2 e f
+yf-U2Vl I; x - o-viV 2 dx+u 2& 2 I -, evI + f ,v2yu 2dxH I 10- FIX 1N x+V2 00

(4-8)

After the substitution of boundary conditions

u1 (o) = u 2(o) = Vl(o) = v 2 (o) = 0

ul(e) = u2(e) = v1(f) = v2(e) = 0

The inner product becomes:

e (9 V r2e ~ ~ _ (()9 - (.) u
<u,Av>v = f [v 2 ]T  H dx

0 1u21° -H~a(-) lu(.

= <v, A*u>v <A'u, v>v

Hence,

[ 2 1
A*= 2(.) j(.)

-H,,9(.) V02(.)

If A is dissipative, then, Re <v,Av> < 0. If, instead of V = HO XH , an equivalent

inner product space V' is considered as
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where P is positive definite and seif-adjoint.

if

PL~ = 2 'e 01 a, a2 >O0

then

<LZv= <Z,PZ>v (4-10)

<Z,AZ>-v = <Z,PAZ>V

<Z,AZ>v, =JhzW]T [V 2 a(.) 2v32( dx (4-11)

0 %0H

f h, + W-eh

0 Ic zLH~h + c~xd'l H ahz+ a~a 2

0 Hx

Therefore,
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'I

<Z,AZ>v' fu- z[ -- (hz) + L49w)2 dx

+ f Hz(hw) dx
0

where h,(O) = w(o) o--w(e) - h,(e), resulting in

<Z,AZ>V = -f t (Lh)2 + 14(-w)2 dx. (4-12)

It is clear that operator A is dissipative in the equivalent state space V. Similarly, for

the adjoint operator A* in the space V ,

v2

<Z,A*Z>V, f [h, w]T av °) 'O dx (4-13)
- 2H1 0(') a2 Llo3 (')

=f -f [i -~ (ahz) + ~ ]dx
0 x

V(2

VI

-f -Va(hw) dx
0 X

or

V .2 (ah)2+ OI
<Z,A*Z>-V - u H (3hz)2 + (&w) dx (4-14)

This indicates that A* is a dissipative operator in the inner product space Vj . However,

the dissipativity of A and A* are found with respect to the norm H0 XH instead of

H8 XHO. To derive the dissipativity of A and A* with respect to H° XH ° , the relation

between these norms will be sought. Let h, and w be expanded in terms of their Hilbert
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space coordinates. This expansion is possible because D(A), as defined, is compactly

embedded in H8 XH ° (Sobolev embedding theorem 2.9).

IflwtX

hz= E a,(t)Sin-n-- (4-15)
n-I

w= E b,(t)Sin-- (4-16)
n-I e

f (ah.)' dx--f a nm-T a (t) am(t) Cos- 2r- Cos- - dx

E(nh;2 -ax)f Cos "rxd
o-I -0 -Im

e e

fCos---i- dx - f Sin 2 ---r- dx
o 0

(A,.)2 d2 fi n7 r2 2"(t f Sin2- d
f(h)dx=n a,-t)i-xd

0 n-I T 0 e

e n 2  - 2 2

=f- n -T a(t) Sin f-n- Idx.
0n-I e

The~ anm eol beapid ow heeoe

0 n-I I

I a'(t) SinI 7 -dxJ a atin dx

f (ah,) 2 dx > hz dx (4-17)
00

The same would be applied to w. Therefore,



.<Z,AZ>V = - v {J (ahz)2 + (aw) 2 j dx
0f vx

<Z,A*Z>v, = <Z,AZ>v <- - [ PH - h' + vwj dx (4-8)
0

Considering

Lmia - min (H, iV) > 0 (4-19)

then

<Z,A* Z >V = <Z,AZ>>v' vmi a <z, zv (4-20)

where

<Z,Z>v f hl +zw1 dx (4-21)0|

From the dissipativity of A and A* in V and the fact that D(A) is dense in V, Corollary

3.1 leads one to the conclusion that the operator A is an infinitesimal generator of a CO-

semigroup in V. The normed spaces V and V are equivalent, therefore, it is clear from

Theorem 3.10 that A also generates a c0-semigroup in V.

Clearly, the Lyapunov functional is the norm in equivalent normed space V;

namely,

=<ZZ>v vx h' + w2 dx (.1-22)

Therefore,
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2 = 2<Z, Z>v = 2<AZ, Z >v' (4-23)

Equation (4-12) leads to the conclusion that 2 <0, i.e., the perturbations in

transverse mode are stable. However, stronger results are conclusive from inequality (4-

20), which indicates the exponential stability of the system with

1iT(t) t(vv) e -  (4-24)

-7r2

where w - min and vmin is given by (4-19).

(ii) For longitudinal mode of wave propagation, the generic form of the evolution

equation (4-3) is considered with Z. = [h., v, u, p", T"] T  L2(oe), go,t) = g(,t) = 0.

The evolution operator is given by (4-5). An approach is taken similar to the transverse

mode to construct the domain of operator A and normed space V

D(A) = {Z: Zi E HI H' , i=1,2,3,4,5} (4-25)

V H H X H° X H° X H X H ° = (H°,E ) (4-26)

such that

', v - <','>(Ho, E )

The adjoint operator can be found similar to the case of the transverse mode but with a

more laborious calculation.
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-2 2 2

0 H 1 3a +H3,a 0 0

1,2
-H ( 00 00

__4 02 a R aA =+Hy 0 +-u5i--+ -(4-27)3 o2 +x CVoax

0 0 +RTo (9 0 0
0 K

0 0 RTo - 0 - Y__

ax ~poc, 3,- 2

To show the dissipativity of A and A*, the equivalent normed space is defined as:

' <.,P.>v

where P = diag(k, a 2 , cs, a5 )and ai > 0,

1, -- , --- ' a 4 ---- RT, &~s =-- CT• (4-28)
vx y y y

Based on these values for ai's and similar algebraic techniques used in the transverse

mode, the following can be derived:

_-- h p + I~v  1p2  + 4-3 - I + a.5  K t " 1
<Z,AZ>v = <Z,A*Z>v= H i2- xy g2 + I f2 x 3 K IT"

1 &LHax ax + 3 L ~ 1 0 c~,

(4-29)

< 7 [-ip 112 + 2 vIfv l + 4-ae 3vju1p+ K iT" 112
e2  1h3 + I (4-30)

Therefore, the operator A generates a semigroup and perturbations in longitudinal

modes represent a dynamical system on V. If one uses the Lyapunov stability method

with

2 = <z,z>v
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then

-- 2<Z,AZ>v < 0

which indicates the stability of system. However, due to the zero coefficient for lip" 112 in

(4-30), the results cannot be extended to exponential stability and the semigroup

generated by A in this mode is a contraction semigroup, i.e.,

IIT(x) IIk(vv) < 1

Application of Spectral Analysis

By means of the separation of variables, the semi-group property generated by A

can be constructed. The solution for Z = TXI] will exist if

X"
m --T X- Hx X"

det = 0
v X h xW
H, Xh Tw X,.

Whenever T and X independent functions of x and t, respectively, the terms andT' X

should be constant. This results in X being represented by a real periodic function.

Hence, x X x - and -I = S. The application of boundary conditions

X e'2 'X e T

yields X. = nir for n = ±1, ±2 ..... Therefore, the characteristic equation for the

transverse mode can be reduced to

S2 +s(PH + V)- + v + , H T = o,

with the following roots.
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aoeS 11,2 (Vf ) V2 ]s i 2,fi ( + e) 2 : 0\/ 4 X) - e 2

The above expression for S. indicates that sup [Re o- (A)l < 0, which is the necessary

condition for the equilibrium solution of system equations to be exponentially stable, i.e.,

an equivalence to uniform asymptotic stability for the system of equation (4-1).

The application of the spectral analysis to the longitudinal mode results in the

following equation:

po -+ p- -- - sC +
Po 3 To (--1) - 0 T( y-1)

L2 2_ 
10

( U-- - +)(-- - + S) + V2-X- 2 V2(S + V \n2S2 + S K -X 0.
e+S e 1 le2 Y(S le 2ToT 1) + , pe 2

where po is the pressure related to po and To, and -y is the specific heat ratio Cp/CV.

This characteristic equation does not have a closed form solution. Therefore, with

the exception of very simplified and special cases in general, the spectrum approach is

very complex and requires cumbersome, symbolic manipulations to provide stability

results. Furthermore, X's, in general, can be both positive and negative numbers,

resulting in two sets of characteristic equations with positive and negative coefficients,

whereas the outlined Lyapunov approach would provide stability analysis for the system

without the knowledge of system solutions, eigenvalues or the form of wave numbers.

Wave Speed

From the characteristic equations derived for transverse and longitudinal modes of
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motion it is possible to comment on the characteristics of the speed of wave propagation

in both directions. In the case of transverse waves, the eigenvalues are given by the

following equation.

X 22
s1a [n 74+W) ±V4VLsn = -2 _( " +  (L,' - 0)'  4V'Y C2

In general, Sn can be written as a combination of real and imaginary parts.

Sn = Re(S.) + i Im(S).

This results in a wave with frequency .,n = Im(S), where

2 = N v; (,_) 2 X\
Xe2 4 e4

Obviously, in order to have a wave (under damped conditions), w,, must be positive. If

)2 < 0, there is no wave propagation in the transverse mode. Hence, wave speed can be

defined as

4|

X 2 4 e 2

or

v (uLH Lv) 2

+ 2v.2 4e2 v2
X2

which has an elliptical shape, as shown in Figure 4.1. When L11 = v, the maximum

value of the transverse wave speed is limited by Alfven speed in the x-direction.

Moreover, for the transverse wave to exist, the maximum difference in (1/H - ') is caused

by minimum X. (i.e., >n,min ). Therefore, if
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Figure 4.1 Wave speed for transverse mode
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the generation of transverse wave is plausible.

Due to the complexity of the characteristic equation, only the special case where

= K = 0 and vH * 0 are considered for longitudinal waves. The characteristic

equation for this case would be:

i ~s + X S 2[ R T + (V 2 + V 2)] +  R T V 2 + VH S s3 -  _

S + +-yRT + e2 + S-i- :RTo =0

e2 s2
In the complex - plane for vH = 0, the following can be obtained:

s +X2S2 [IRTo + V 2] + yRTo V2 =0

e2 ,

222 (-(yRT. +±V2 ) ± VrIT '' -4 T '

V 2  2

where V2 = Vx + V2. For the case of vH approaching infinity S3 , the third root would

,2s

be zero and --- - approaches -- 'RTo, as shown in Figure 4.2. Hence for vH # 0, there

are two wave speeds, Vfast and VSlow, where

Vt<- R + V2 ) + V/( RTo + V2)2 -4-RTo V2]

2 - [ + V2) _ V/(,RT + V2 )2  2,]Vslow < 2 ,~ 4 )-+ ,RTo V,•
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V2 ) I+(L2

XI 2s

Figure 4.2 Eigenvalues for longitudinal mode
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CHAPTER 6 - LYAPUNOV'S STABILITY AND CONTROL OF MPD

THRUSTERS

Modeling of MPD Thrusters

In this section the model for MPD thrusters, used as accelerators, is derived. This

is a simplified model of the MPD engine and other researchers are studying the

derivation Of a more complete model for the system. The task of complete MPD

modeling is beyond the scope of this research. The simplified model, derived in this

section, is used to study the feasibility of the proposed stability and control analysis on

the MPD thruster. Figure 5.1 is a schematic of such a system. The flow of ionized gas

enters the thruster and is subjected to an electric field E and a magnetic field B, which

are perpendicular to each other and to the gas velocity. The electromagnetic

acceleration process is an aggregate of effects from compressible gas dynamics, ionized

gas physics, electromagnetic field theory and particle electrodynamics. The individual

analytic complexity of each of these phenomenon adds to the level of difficulty in an

adequate theoretical model for this composite system. Analytical progress normally

stems from simplified models which preserve the essential physical aspects of a specific

situation.

The description of the motion of plasma in terms of Maxwell-Boltzmann

distribution function is too detailed to be useful for many practical problems in the

electromagnetic acceleration process. In these cases, the ior'zed gas medium can be

considered as a continuum fluid whose macroscopic physical properties may be described

by the conservation laws and Maxwell's equations. These governing equations, for the

motion of plasma, will be gas dynamic equations with the interaction terms due to



-69 -

WI ()

Figure 5.1. Schematic of configuration of flow and fields for one-dimensional
electromagnetic steady flow accelerator.
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electromagnetic forces. With this approach, a simplified model for the problem can be

derived, as depicted in Figure 5.1. As shown, the plasma is flowing through the constant

area channel along the x-axis. The channel is formed by two conducting walls connected

to the cathode and anode poles, respectively. Between these walls an electric field E(x) is

maintained in the y-direction. Normal to this electric field is a magnetic field B(x),

applied in the z-direction. The model is assumed to be one dimensional, i.e. only

variations in the x-direction are considered. Applying this assumption in the general set

of governing equations in Appendix C, one finds

Conservation of mass: L- + (pu) -0 (5- )
at Ox

where p and u are the density and the velocity of the gas, respectively. The momentum

equation results in:

Ou) O(pu 2) Op Or
a(pu )+ + =97

where p is the thermodynamic pressure, r is the shear stress, Fe is the electromagnetic

force (Lorentz force) per unit volume, i.e. Fe = J X B, and Fv represents a combination

of collisional forces and is assumed negligible compared to the other terms. It is also

assumed that the shear stress 7 is negligible. Expansion of the momentum equation and

substitution from mass conservation equation results in the following:

at Ox Ox (5-2)P - + Pu- = - -(52

Due to the one-dimensional assumptions, the variations in the y and z direc:nns are

neglected, and the gas velocity components in y and z directions are omitted. The

energy equation results in the following:
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a + (puh) uJE + T) aQx = +

where

e specific total energy (internal energy + potential energy

+ kinetic energy)

h - specific total enthalpy (h = e + P/p)

Q heat flux due to convection and radiation, assumed negligible.

On the right hand side of the energy equation above the term JE represents the

Joule heating due to the application of electric field. This term can be considered as the

dominant form of dissipation of energy. The plasma can be assumed as a perfect gas,

with the state equation

P = pRT, R = RA/m

where temperature is denoted by T, and RA and m are the gas constant of plasma and

molecular weight of the plasma, respectively. As a result, the specific energy, e, and

specific enthalpy, h, can be represented as

e = cT + u2/2

h = cPT + u2 /2

assuming the potential energy terms are negligible; cp and c, are the specific heat

coefficients

cpm

and "y is the specific heat ratio of the plasma.
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Hence, the energy equation can be simplified as follows:

a pcvT + p-- + (9 PucpT + p- JE . (5-3)

From a practical point of view, it is reasonable to assume that the displaced current,

0E ,and excess electric charge, Pe, are negligible terms and that the energy in the19t'

electric field is much smaller than that of the magnetic field. This results in the

following simplified form of Maxwell's equations in Appendix C:

V "x×B =J

le

where B = /,tH

9BV xE= (5-4)

at

V.B =0

V.E =0

If one specifies that the magnetic field generated by the current flowing in the gas

is negligible with respect to the applied field B(x), then the electromagnetic field

equations (5-4) can be decoupled from the dynamics of the plasma 711.

By Ohm's law, one can relate current density J with the applied fields as:

J = o(E - uS), o- = 7(p,WT)

where 01 is a transport coefficient and is called the electrical conductivity.

Afe susitto fo LP a in the energy equation (5-3), one can arrive at the

following set of equations (5-5) to (5-7) as the set of dynamical governing equations for

VBI



- 73-

the MPD thruster:

_p + D(pu) _0 (5-5)
ax
o, a R 9(pT) JB

+ u-= + (5-)p o8x p

OT RT au &T +J(E - uB) (57)-+ - + u (57
c.5i u- axpcV

where J is given by Ohm's law.

Control of MPD Thruster at Equilibrium State

In the set of non-steady equations derived in the previous section, i.e. equation (5-

5) to (5-7), the parameters B and E can be regarded as input functions to the system.

One of the crucial questions about the behavior of this system is how to characterize the

relationship between system response and those inputs. The general response

characterization of these systems, which change with both time t and spatial coordinate

x, is a complex problem. However, one can break the problem into steps by trying to

make assessments about the equilibrium states of the system of the partial differential

equations. Hence, one can pose the question of what choice of inputs would lead the

system to a set of equilibrium states, and under what conditions such controls would be

inplausible. In order to answer these questions about the equilibrium states of the

system, one must derive the equilibrium set of equations from the original partial

differential equations. If the states of the system are represented by a vector valued

function v, as following:

p(t,x)1
v = u(t,x)

[T(t,x)j
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then the equilibrium vector would be denoted by v. where

rPe(X)1

Similarly, the inputs (controls) can be defined by a vector valued function U as:

U1 JBU= 2 [J

At equilibrium, system states reach their steady state values and their time

e v
derivatives would be zero, i.e. = 0. Equations (5-5) to (5-7) can then be simplified

to the following equations:

d dPe Pe Ue

e(Peue)= o - - d (5-8)--(pu,)= or = ue dx

due R d(peTe) U1 (
1 p dx Pe

RTe due dTe U2 - UeUI

cv dx dx Pecv

Substitution of equation (5-8) into (5-9) results in the following equations:

RTe due dT _ U1Ue - - u e + R dx- = e

UUe dx dx Pe

RTe I due dTe U 2  UeUi

c.-J dx dx PeCv
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due ",nuUl - (- -1)U 2

-dx =  Pe(U2 - "YRTe)
dTe -u U1 + (U2 - RT)U,2= (5-12)dx puev(ue - )RTe)

If the speed of sound ae is defined by ae = 'YRT., then (5-11) and (5-12) can be rewritten

in vector differential equation form such that

dye 1 Pe Pe

dx u!-a! u! u - RTe U (5-13)

Pe Cv PeUecv

ue RT, -11

U --- 2 v PeUeCv Pe dve ( -4

U ~ ~ c Pec dxe (5-14)
uY dx

Pecv Pe

Therefore, for any equilibrium state it is possible to arrive at a control vector in

the local sense with respect to the coordinate x. However, in transition from subsonic

flow to supersonic flow, where u. = ae, i.e. unity Mach number, the control inputs U1

and U2 become dependent on each other. In this case, one should choose U1 and U2

according to a certain relationship suc. that the transition from subsonic to supersonic

velocities and vise versa would be plausible, namely,

U2 = -- i)j ' at u. = RTe

or

E _ ue

B -( -1)
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This effect is the same as the choking condition in gas dynamics, which is extended to

magneto gas dynamics [72].

Ue
Based on the definition of Mach number as M - 2 ,it can be shown that

2_ dM 2  due dTe
m 2 - and d e

4RTe M2  Te

or

dM2  du e  dTe
-M = 2- (5-15)

m 2  Ue Te

1 d(M2 ) _ 2 due 1 dTe (5-16)

M 2  dx ue dx T. dx

due dTe
By substituting for due and f from equations (5-11) and (5-12), one can derive the

following results:

(1-M2 ) dM2  
_ M2 + 1 2[(2)M j(-7
S - U 2 - 11 U, (5-17)

M2  dx PeuecpTe Pe

For subsonic flow M < 1, an increase in M is possible provided the following

inequality for control inputs is satisfied:

U2 > [(y-1)M 2 + 2] PeuecpTe [(- -I)M 2 + 21 "ue(

U1  [-yM 2 + 11 Pe ['YM 2 + 11 (--1)

For supersonic flow M > 1, an increase in M along the thruster occurs if

U2 <[(y-1)M2 + 21 'L-e

U [YM 2 + 1] -1(-

U2
At sonic condition the ratio of control inputs U--- should comply with the

, I II I
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aforementioned quantity, .-1" Clearly, for the decelerating flow (when M decreases

along the flow) the direction of inequalities (5-18) and (5-19) would be reversed.

One approach to constructing acceptable control inputs U, and U2 , based on the

exclusion of singularity at choking, is to consider

= [(-,-)M 2 + 2] tUe U + 4 (5-20)
2 [- M2 + 11 (--1) (1-M 2)

where U4 > 0. Substitution of (5-20) into (5-11) and (5-12) will result in the following

equations:

due - UeUI + (-1) U4  (5-21)
dx pe('yM2 +1) ^rPe

dTe -2J, (M2 -1/) U4  (5-22)

dx PeR('YM2 +1) PeCvUe

Since the Joule heating (U2 ) is a positive function, for supersonic flow, from condition

(5-18) one would have:

U4  [( -y-)M 2 +21(
"2ueUI (M2 -1)(M 2 + 1) (5-23)

For subsonic flow, i.e., M 2 < 1, U2 in equation (5-20) is positive for any U4 > 0. Also,

the current density, J, should be positive in the chosen direction to accelerate the flow;

hence, one can find the following conditions from Ohm's law:

J=7(E-uB)>0

E > uB (5-24)

or
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U2 > UeUi

From equation (5-20), U2 can be substituted into the inequality (5-24). Hence,

for M < 1 U4(1-M 2 ) + [(y-1)M 2 + 2] (y-1) > 0 (5-25)

YUeU
1-J ('YM 2 -1) -y

for M > 1 U4  < [(-f-1)M 2 +21 h-1) (5-26)
[:ueU1J (^M 2 +1)(M2 

- 1) -(M 2 
- 1)

It is clear that in subsonic flow, the inequality (5-25) is always satisfied. Therefore, there

is no constraint on U4 in this regime. However, for supersonic flow, the inequality (5-26)

represents a more restrictive constraint on U4 than the inequality (5-23). Therefore, a

proper choice of U4 can be selected to satisfy the inequality (5-26). The steady state

response can be found from equations (5-21) and (5-22) for some arbitrary choice of

U1 >0 and by the selection of U4 according to the aforementioned process. It would be

an interesting proposition to apply the theory of optimal control to find the optimal

control inputs U1 and U4 among an arbitrary class of functions. These optimal values

for U1 and U4 can be obtained in terms of the minimization of a cost function. For

example, the cost function can be selected from the group of "fuel optimal" problems,

i.e.,

x=O

keeping in mind that the optimal control problem is involved with control constraints of

the form of the inequality (5-26), while U4 , U1 are positive quantities.

Perturbation of Nonlinear Unsteady Equations
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Based on the equilibrium state represented by Ve(x), it would be interesting to

evaluate the system behavior in the neighborhood of its equilibrium states. if the

perturbation of states with respect to equilibrium is denoted by , then

[P(t,x) [Pe(x)

v +±Ve Ii(t,x) +1 U-(x)

T(t,X) Te(x)j

where

<< Pe

<< ue

<< Te

By substitution of v into the dynamic equations (5-5) to (5-7), one would obtain the

following:

-p + (ue + fiPe + Peu, + p) = 0

a(ue_+q) R a(OeTe + PTe + PeT + T) Ui
0- - +  + + U

x + a Pe +

a t +R(Te + t) a(ue + a) +(ue + a) a(Te + U2  (Ue + )Ui
FC aX ax (Pe + F')Cv

In order to simplify the notation, perturbation states are denoted without the sign

and should not be mistaken for their state functions. Moreover, the nonlinear terms are

assumed negligible in a sufficiently small neighborhood of the equilibrium states. As an

example, one observes
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-- << P,- u -- peu - .

Similar statements would be true about other nonlinear terms. Integration of these

results with the steady state equations (5-8) and (5-10) yields

ap + u, P- P + P O u = 0 (5-27)

-( OdxXIue dx

O9i +' RTe) 2p Uedue R dTe '- -I- + - -I- P- + - p
Pe dx pe dx

+u + + R OT R due
+ -beu ueI dx T =0 (5-28)

[~ T duei +1u dTj ' i
+ ('7--) e d P -u (5-29)

Pe I Pe dxv I I,
+ Id T+ (T=0

, c 0 - - dx J -

This set of perturbed equations are linear and their characteristics depend on both

equilibrium states and their derivatives.

Lyapunov's Stability for DPS Applied to MPD Model

In this section, the Lyapunov stability theorem is modified and applied to the

system of partial differential equations of (5-27) to (5-29). These equations represent the

dynamics of the perturbation state v about an equilibrium state vector ve. Hence, by

Lyapunov method's one can determine whether any deviation from the equilibrium state

is stable or grows unboundedly with time. To be consistent with the notation in

Chapter 3, one could rearrange equations (5-27) through (5-29) to the canonical form of

the evolution equation. Here the notation () is used to represent d(____):dx
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Pe
Ue P. 0 Ue - Ue 0

U,

RT
av Ue R 9v U, R , R U

Pe -- U+ TeU
ax Pe Pe U.

RT,0ue T , u, U,c -1)Zu'e+ZT'e - T'
Pe Pe PeCv

(5-30)

It is clear that v = 0, i.e., the null solution, represents the condition where there is no

variation from the equilibrium state.

The characteristic directions (eigenvalues) of this system of equations are:

Xi=ue , 2 =ue + , , 3

Therefore, (5-30) represents a system of hyperbolic partial differential equations. For a

general hyperbolic system of the form

- +B v AL v (5-31)0~t ax

where

dv
Lv=A- +Bv (5-32)

d~x

it is possible to show that the system of equation (5-30) can be made into the form of

(5-31) with a symmetric A matrix.

For simplicity, and)

Frs2 and 2 are denoted by subscripts (t and ()x. As shown

below, by dividing equation (5-25) by (Pe), (5-28) by (/Te), and (5-29) by

(T y-1 Te), the following symmetric A matrix can be obtained:
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Pt U 0 - P
Ue "R 0 "'

Pe Pe

Ut Ux
0= R . + ue V(-I)RTe - +

Tt Tx
0 V 7(--)RTe ue \ '-) Te

U. p

(UeU't+RT'1) , e Uu. _. /(. _I)RT, u

UR u. 7 (5-33)

\rUIT T(-T-1)Teu'e+UeT'e , 71_-i r
v7YC T,7 7 T

It can be shown that

A (P/Pe)x ,
u, [2 1 uPe p

x TT uT' (5 34)
11T . T'e

T e '--1 Te / --i +V/-,- T2

xe

The vector function v is then redefined by following new vector

PIPe

u
v = R(, e

T

Substitution of (5-34) into (5-33) results in

vt + A vx + B v 0 (5-36)



- 83-

where

A= u.  %/(-I)RTe= AT (5-37)

0 V(-U)RT, u,

and

, Ue/-R Ue +I T'. 0
Pe+ e T Ty)

, T' , - -u', T'e

(uR'.+RT'.) P'U Ue -) --

B -
cRTi T U+-

('f1)T.U'e+UeT'e ,j5 ~ IT P~ U.Te.
T ++ ( . .

T.7-1 2 T', (Y-I") T

(5-38)

To construct a Lyapunov functional for this system, it is sufficient to select the

functional as an equivalent norm of a Hilbert space of states of equations (5-36), i.e.

from the discussion in Chapter 3 this functional would be a bilinear form as follows

e
=<v,1v> 2 = <v, Sv> =fvT S(x) v dx (5-39)

0

where S is a symmetric positive definite and bounded linear operator. In order to satisfy

the sufficiency condition of Zubov's theorem for the stability of system of (5-31), one has

to show that there exists a S(x) for which dY < 0.
dt

Equation (5-39) yields:

e e
d-= J S(x) v dx + f v T S(x) ,' dx

0 0

Conjugate operators are defined based on the bilinear form operation as follows
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<z,Sy> = <S-zy>

where S* is defined as the conjugate of S. Since S is a real operator, S = S, and

If - eo

f vT S(x) dx= <v,Si> = <STy, v> = f (STv)T dx
0 0

then

= dSx Vd + f (ST(x) v)T ~d- = f  S(x) v dx fs T x v  +dx

0 0

= <v, Sv> + <STy, €>

If the operator S(x) is chosen to be symmetric S S ST, then

d = 2 <Sv, > =2 f vT S(x) dx (5-40)
0

Now, from equations (5-36), one can substitute for v (i.e., v) into (5-40). This results in

d.2
= 2 <Sv,(-Av.)> + 2 <Sv,(-Bv)>

d=-2 f vT S(x)[A v,] dx - 2 f v T S(x)[B vJ dxdt oo

where

f VT S(x) A = f ~-[ 1 J S)Jd- f Va x A v dx - f vS(x) Av dx

S 9 T S(x) A v dx 
(3-41)

0

Using the same discussion about conjugate of the operator SAI the following can be

derived:
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e V e T9

f v S(xA dx f [S(xlAI T v -dx. (5-42)
0 0 O

and

f~ 0T S(x) A v dx f [S(x) A] vdx (5-43)

0 ax 0a

If [S(x) A] = [S(x) AlT, equation (5-42) becomes identical to (5-43) and substitution into

(5-41) results in

[S(x)A] 2L d. f a [vT Afxf T0x a[ x I t x
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CHAPTER 6 - CONTROLLABILITY AND OBSERVABILITY OF DPS

In the design and analysis of a dynamic system, stability is often the most

important objective, in terms of a desired performance. In cases where the system is not

stable or the performance is not satisfactory one needs to know whether or not

application of an external input, namely, a control action, will provide the desired result.

In case of feedback control, implementation of such control action requires

observation(s) of the system behavior. In specific terms, one must be able to determine a

control action such that the system can be directed toward the desired performance.

This property depends on the system characteristics and the way in which it interacts

with the control inputs. On the other hand, the acquisition of data may not always lead

to the proper anticipation of the system's behavior. The former property, which

determines whether a system can be controlled to achieve a desired performance, is

called "controllability". The latter characteristic, which determines whether the system

behavior can be "estimated" from observation of the system output(s), is called

"observability".

In this chapter these properties of finite and infinite dimensional systems and their

relations to one another are reviewed. Once these properties of the system are

investigated, then one can study whether an unstable system can be stabilized by

addition of a proper control action, namely, whether the system is "stabilizable".

Controllability of Dynamical Systems

The abstract evolution system of Chapter 3 with the addition of control action is

considered in this chapter. For linear time invariant finite dimensional systems
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=Av +Bu (6-1)

and

v(o) =v o

where vER', ueRm, Ae2(Rn,R'), and Bei(Rm,Ra). The solution of this equation at

time t is

t

v(t) = eAtv + f eA(t-S)Bu(s) ds (6-2)
0

The system of equation (6-1) is called controllable if, for each pair of v(t) and vo R' and

finite time t, there exists a bounded control u which directs vo toward v(t). Without loss

of generality v. can be selected as zero. The set of states v(t)eR n , which can be

controlled from v, = 0 by the control input in a finite time t, form controllability space

Theorem 6.1. The controllability space 16 is a linear subspace of R'.

Proof. If v1 and v2 EWCR', where each state is attained from the application of

controls ul and u 2 at times tj and t2 , respectively, then

t'

v1 = f eA( t ,- s ) Bu l (s) ds
0

t-1

V2 = f eA(t - s) Bu 2 (s) ds
0

Letting 0 < t1 _! t 2, then ul(t) is nonzero for 0 < t < t t and zero elsewhere. Consider

an arbitrary control action u(t) for 0 < t < t2 such that
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u(t) = U(t) + 3u2(t) 2,2eR < D.

Hence, the new control u(t) directs the system to a new state v(t2 )&'

t2

v(t 2 ) = f e - 9 [au(s) + 3 u2 (s)j ds
0

t2
= f oe A (t - s} u,(s) ds + 3v2(t 2 )

Letting s' = -t 2 + tI + s, then

t s'-t 4

j e t 
1 (s) ds f eA(t1 - ') ul(s' + t 2 -t) ds'

where uI(s' + t2 -t 1 ) in the range of t1 -t 2  5s' K t1 is the same as u1 (s') in the range of

0 < s' < t. Therefore,

t 2  s-t 1

f e u I(s) ds - f eA(tls') ul(s') ds' = v,(tl)
0 s-O

or

v(t 2 ) = - 1 (tl) + 3v2 (t)

This states that 16 is a linear closed subset (subspace) of R' .  13

A system with state space V = R' is controllable when every point in the space V

is reachable. This implies that for every state in space V there exists a control action

ueU = R'. In turn, the controllability subspace must be all of V and the dimension of 6

must be equal to the dimension of V, i.e., n. This idea can be implemented in the

following theorem to derive controllability criteria for finite dimensional state spaces.

Theorem 6.2. The system of equation (6-1) is controllable if and only if B* eAs(-S)v = 0
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implies

v 0.

Proof. Let an input u(t) control the system toward state vi at time tj, where v,(E. If

state veV is considered such that v is perpendicular to W, then

ti

W, V > ---<v,f eA~ts')Bu(s) ds> = 0
0

ti

f <v, e A(ti-)Bu(s)> ds- 0
0

t'

f" <1* eA'(ti-S)v, u(s)> ds = 0
0

Hence, for arbitrary choice of ueU, one should have

B* eA*(t,-S)v = 0 , (6-3)

so that the value of inner product remains zero. For the sufficiency portion of the proof,

equation (6-3) implies v = 0. Therefore, the only vector perpendicular to W is zero, i.e.,

every vector in V is also contained in W. The proof of necessary portion is obvious,

because if '= V, v = 0 and B* eA *(t - s) v = 0. o

The well known controllability test can be derived from this theorem. If equation

(6-3) is expanded then

B* eA *(t, - s) v = B* v + (t,--s)A*v + t . . 0

Since (tl-s) is an arbitrary time duration, then 1, (t,-s), (t) 2! is linearly

independent vector. Therefore, the coefficient vector will be zero.
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Or,

B*A*

B* 2V 0 (6-4)

From the Cayley-Hamilton theorem, orders of A* from n and higher are linear

combinations of orders (n-i) and less. Therefore, the system of equation (6-1) is

controllable if and only if equation (6-4) implies v = 0. This is equivalent to the

controllability test of

B'*
B*A*

C* = B*A*2  having rank n.

B*A*n-l

From the above discussion it is clear that the concept of controllability is basically

geometric and it is independent of coordinate system. To show this let w = Pv in

equation (6-1), where P is a non-singular projection operator, then

P-, = AP-'w + Bu
w = PAP-1w + PBu

1 ='kw + AU

= [PB, PAP- 1 PB, (PAP-1)2PB,...,(PAP-')n-'PB]

P P[B,AB,A 2B,...,A B =PC

rank C = rank PC = min(rank P, rank C) = min(n,K), where rank C = K and K < n,

rank C - rank C. 0



- 91 -

In the specific case that P is the similarity transformation, PAP - 1 = A

{ [I' A, A', -'' I An PB

Due to the diagonality of powers of A, matrix C has the following form:

(PB)1  X1(PB)n Xj(PB)j Xa-(PB)j

Clearly, rank of C is n if and only if there is not any row of PB which consists of all zero

elements

(PB)i 0 [0 ]T

In infinite dimensional systems the concept of controllability is more complicated

than those of finite dimensional systems. This complexity is a natural outcome of

differences between finite and infinite dimensional spaces. Consider the abstract system

of (8-1)

=Av +Bu (6-1)

v(o) =Vo

where vEV = L2 ([o,e],E n ) and uEU = L 2([o,(],Em) are product infinite dimensional

Hilbert spaces. Most of the ideas presented here can be extended to Banach spaces. The

operator. A is assumed to be generator of a semigroup of bounded operators T(t) for

t > o on the Hilbert space V. The operator B : U --.* V is a bounded linear operator.

The solution of this system as given in Chapter 3 is
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ti

v1 (t1 ) = T(t) v, + f T(t-s) Bu(s) ds (6-4)
0

The integral operation in (6-4) is a transformation Cu of uEU into v&l C Z. Equation

(6-4) can be rewritten as

ti

v1 (tj) - T(t) v. = f T(t--s) Bu(s) ds = Cu(u) (6-5)
0

The left hand side of (6-5) can be considered as a transformation of v0 and v, into Z.

This transformation is then S:X = (V X V) - Z, i.e., it maps the pair v, and v(t), and

t'

its image is v -- f T(t-s) Bu(s) ds. Earlier in the discussion of finite dimensional
0

systems, the case of vo = 0 was considered, or in terms of present notation, the space X

was V X(O} and consequently X = V. Clearly, there is no loss of generality for the

former representation. However, the present notation provides a better insight in

distinction between Z and V, even though they might very well be the same space.

Based on relationships between abstract spaces U,X,Z, the abstract linear control system

can be established. Figure 6-1 shows this abstract control system. Therefore, the

abstract concept of controllability could be addressed with the following definition:

Definition 6.1. The abstract linear control system {X,U, Z, CU, S

(a) is exactly controllable if W = Range (Cu) ;? Range(S)

(b) is approximately controllable if Range(C,) D Range(S).

The definition 6.1 (a) means that for every v. and v1(tj) there is a control u such that

CQ(u) = S(v 1 ,vO) or equation (6-4) holds. This indicates that the control u steers the
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C
U UZ

Range(Cu)

U Cu z

Range(S)

Figure 6.1 Abstract linear control system
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system from v0 to v, during [0,t 1]. Whenever Range(S) is contained in or is equal to the

closure of Range(Cu), as denoted in definition 6.1(b), it is possible that the choice of v0 ,

v1 would lead to an image point S(v 0 ,vl) in Range(S) which is in Range(Cu) but not in

Range(Cu). Therefore, from relationship between Range(C) and its closure, for a point

in Range(Cu), there is a point in Range(Cu) which is contained in the ball of radius E for

every e > 0 such that

I Cu(u) - S(vo,vi) Ilz < . (6-6)

This shows that Range(Cu) is dense with respect to Z. In finite dimensional system

Z = R' both of definitions 6-1 (a) and (b) are equivalent, since every dense subspace of a

finite dimensional vector space R' is R'. The controllability condition given by theorem

6.2, which indicates synonymous approximate and exact controllability in finite

dimensional systems, relates to only one of the controllability concepts of definition 6.1

for infinite dimensional systems. For these systems, if there is an element z in Z such

that it is perpendicular to 16 = Range(Cu), it can be shown the z is also perpendicular to

Range(Cu), even if Range(C) is not closed. Consider an element of Range(C), v,,

defined as

V,= f T(t n -s) Bu(s) ds
0

v n 6 Range(Cu) and v0  Range(CQ)

For every E > 0 there is a v, in Range(C) such that Iv,2-v 11 < E where v is the li-.it

point of v.'s and v 0 Range(C,). Then
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Z,Vn :>- 0

< z,vn - <z,v> + <z,v> -0

< z, > = -< z,v > (6-7)

But v, - (v, -v) is an element of Range(Cu). Hence, < z, v - -< z, (v, -v) > = 0.

In the case that e - 0, v, - 0 such that

< z,v> = lim < z,v> > =0

Therefore, z is perpendicular to Range(Cj). Now, as in theorem 6.2,

t

< z, T(t-s) Bu(s) ds > = 0
0

<B*T*(t-s) z, u(s) > = 0

where for arbitrary u, B*T*(t-s) z = 0 implies z = 0. In turn, this implies that the only

element not in the closure of Range(Cu) is z = 0, namely Range(Cu) ; Range(S).

Therefore, the geometric concept used in controllability of finite dimensional systems is

only good to derive the condition of approximate controllability of infinite dimensional

systems.

Observability of Dynamical Systems

For the system of equation(s) 6-1, the question of observability is whether one can

reconstruct the behavior of the system from the sensory measurements, or more

specifically, whether it is possible to reconstruct the states of the system from the

measured set of outputs. To introduce the output set for finite dimensional system of

(6-1), let's consider the output set defined by
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y =Cv (6-8)

where yeY = RP and C is a bounded operator from R' to R P , i.e., Ce.y(R',RP), where

p < n. The output y from (6-2) and (6-8) is

t

y(t) = CeAtvo + fCeAt-')Bu(s) ds (6-9)
0

since y(t) and u(t) are known, then F(t) defined by

t

F(t) = y(t) - fCeA(t-S)Bu(s) ds (6-10)
0

is known and,

Y(t) ---- CeA(t)vo . (6-11)

If the state v. of the system can be determined from y(t), then the states can be

reconstructed from F(t), i.e., the system (6-1) is observable. The following definition

gives a more specific notion of "observability":

Definition 6.2. The system (6-1) augmented with (6-8) is observable on o,tjl if given u

and y as an absolutely continuous functions, it is possible to determine vo uniquely from

(6-10). Clearly, for observable system of (6-1) and (6-8) for an arbitrary chosen u, the

output y is zero if and only if vo = 0. In other words, the system is observable if,

CeAtvo = 0 for o < t < t1  implies vo = 0. (6-12)

Similar to the treatment of controllability, it is clear that condition (6-12) is the same as



*97 -

C
CA

rank =n (6-13)

CA-1

From the controllability condition in theorem 8.2 and the observability condition

(8-12), a duality relation between controllable and observable systems can be concluded.

This means that if a system is controllable, there exists a dual system for it which is

observable. If system (6-1) is considered

''= Av +Bu, v(o) = vo

The dual version of this system is its adjoint. The inner product <w,v> between dual

states represents an "energy type" scalar quantity. Therefore, the total energy of the

ti

system is f -<w~v>dt =<w,v> It' From calculus of variations, minimizing the
0 d

performance index J =<w, v> 1 0 , the following Hamiltonian H would be derived:

n 
nH = wi 1 =j wi(Av +Bu)i

-I iII

W.j -AH - I(A*w)i => =-AMw
i-1

From the trlnsversality of the initial and terminal states and since v is not known

at terminal time t , then w(t) must be known, i.e., w(t) w= .sy The only source of

variations in energy function is the control u in original system and the output y in the

dual system. Therefore,
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d-d .-<w, v> = <y, u>
dt

<',v> + <w,V;> = <W,v> + <A*w,v) + <*w,u> =<y,u>

Hence, y - B*w and the dual of system (6-1) is

* =-Aw , w(ti) =w, , wER'

y = B*w yERm

From the duality between the observation and controi, the abstract observed

system as the dual to the abstract control system of previous section can be constructed.

The operators S and C, are defined as

S: X=VXV-- Z

CU : U-*Z

where S and Cu were bounded with dense domain. Therefore, the adjoint operator of

those can be defined as S* : Z -* X and C*u : D(C*,) C Z - Y, with

<Sx,z>z = <x,S*z>x for xEX and zEZ (6-15)

<Cuy,=z>z <y,C*uz>y for yED(Cu) and zeD(C*u) (6-16)

Figure 6.2 shows this abstract linear observed system. This abstract system will be

denoted by triple spaces {X,Y,Z,C* u,S*}.

The observability for abstract linear system is more complex than the specific case

of finite dimensional systems. The complexity arises for infinite dimensional systems due

to the fact that dense subspaces of infinite dimensional space are not necessarily a whole

space. Therefore, two concepts of observability would be considered.

Definition 6.3. The abstract linear observed system {X,Y, Z,C*U, S*} is



D (C,*)

CO

X s D(S*)

Figure 6.2 Abstract linear observed system
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(a) is distinguishable if Ker C*_ C Ker S*,

(b) is observable if, in addition to (a) there is a positive number K such that

IIC*uzliy KiIS*zlx for every zED(C*u) C Z (6-17)

In definition 6.3(a), Ker C* is the set of all z's in D(C*) such that C*z = 0.

The linear observed dual system of an infinite dimensional control system (6-1) is

w= -A*w weW = L2([o,e],E' )

y = B*w yeY = L2([o,e],E m ) (6-18)
w(t1 ) = w,

The solution for y, as of equation (6-9), in the abstract sense becomes

y = B* T*(t -t)wl (6-19)

where T*(-t) is the semi-group generated by -A*. The set of all wl's to be

reconstructed, i.e., the space of observed states, is given by X and the space of outputs y

is Y and Z is the set of states of the system. It is clear in this case that X = Z and S,S*

are identity on Z. The operator C*, from equation (6-19) is found by

C*u = B*T*(t -t).

In definition 6.3(a), the term Ker S* C Ker C* u means that the set of w, for

y = C* w1 = 0 is contained in or equal to the set of all states w = 0. This merely says

that if y = 0, then w1 = 0, leading to the uniqueness (distinguishability) of observations

of states w. From these relations it is clear that the condition of distinguishability for

abstract linear system is that C*u w, = 0 implies w1 = 0.

Definition 6.3(b) is much stronger than 6.3(a) since it implies that for a bounded

output there exists a bounded "reconstruction" of state, i.e., w1 eZ, or,
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IIC*, w, Ily _ K1w1 1Iz (6-20)

This implies that there exists a bounded left inverse R for C*u such that

R C* u w1 - .

Therefore,

I 1 1iz :f I Rll z(y, llC u w I I I

1

which leads to (6-20) with K = 1 . The operator R is the reconstruction operator, as

shown in Figure 8.2. Therefore, the state w, can be continuously reconstructed from the

observation y = C*uw1 . Due to this duality relationship between controllable and

observable abstract systems, the following theorems can be given:

Theorem 6.3. The abstract linear control system {X,U,Z,Cu,S} is approximately

controllable if and only if the abstract linear observed system {X,Y,Z,C*,S*} is

distinguishable. The proof can be seen from the definitions of approximate

controllability and distinguishability. Namely, tr every uEU, it was shown that every zo

perpendicular to Cju must be zero to give Range(Cu) Q Range(S). Hence

<z, CU U>z = 0 implies z = 0, but this inner product is same as <C %z, u>U = 0, where

for arbitrary u,C*uz = 0. Therefore C*uz = 0 implies z = 0. Distinguishability of the

dual system of {X,U,Z,CU,S} where the observation operator is C% is the same as

C',u = 0 implying z = 0, i.e., the controllability and observability is the same for dual

systems. Figure 6.3 shows this concept in a diagram form.

Theorem 6.4. The abstract linear control system {X,U,Z,CU,S} is exactly controllable if

and only if the abstract linear observed system {X,Y,Z,C*,,S*} is observable. The

proof of this theorem is given in [401. 0
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Rjsnge(C.)

Range~s)

ker(S*)

Range (S) _ Rang (Cs) <-> ker (C.) _ ker (S*)

Figure 6.3 Schematic representation of observability
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CHAPTER 7 - LYAPUNOV-BASED STABILIZATION OF DPS

One of the interesting topics in control theory is the relationship between

controllability and stabilizability of dynamical systems. When some or all of the states

of a homogeneous system is not asymptotically stable, it is desirable to control the

system trajectory such that it becomes asymptotically stable, i.e., stabilize the system by

application of a proper control action. In this chapter stabilizability of DPS is

investigated. However, to simplify this analysis, the stabilizability of finite dimensional

systems are first reformulated for ease of extension to distributed systems.

Stabilization of Finite Dimensional Systems

Considering the finite dimensional system of Chapter 6 when the system with null

control is not asymptotically stable and a control action u will be applied to the system,

then the closed loop system equations are:

= Av + Bu vER' , ueR m  (7-1)

v(0) = V.

where AE.&(R',R') and B = .(R m,R ).

Assuming u is composed of the feedbacks of states, i.e., u = Kv, then this control

system is stabilizable if the closed loop system

= (A + BK)v (7-2)

v(O) = ,

where (A + BK)e 2(R',R'), generates an asymptotically stable system.

If system (7-1) is controllable, then it can be shown that it is stabilizable. Namely,



- 104-

controllability is a sufficient condition for stabilizability of the system (7-1). This can be

shown by application of controllability properties. For a controllable system, it was

shown that for an arbitrary u

B*eA*(t -t)z = 0 implies z = 0

Moreover, the following inner product in space Z

t'

<Z, f eA(tI-t)Bu dt>z , (7-3)
0

is equivalent to the inner product in space U

ti
f <B*e A*(t,-t) z' uj dr . (7-4)

0

The corresponding norm of (7-4) can be written as

t' ti

J <B*eA*(tl-t)z, B*eA*(tj-t)z>U dt = f IB*eA*(ti-t)zl dt (7-5)

0 0

For finite dimensional systems, the condition of approximate and exact controllability

are the same, i.e.,

IU*eA*(t.-t)z I __! 6 IIzIIz  (7-6)

and from equation (7-5) it can be shown that

t'

f <eA(t -t)B B* eA*(-t+tl)z, z>U dt > 311Z
0

for some 0 > 0, or
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ti

< f(e -AtB B* e - A' t ) dtle A'tjz, e A'tl z>t dt > 311zil z  (7-7)

0

An operator D can be defined as

D =f e - At B B* e - A *t dt, (7-8)
0

where D is a self-adjoint operator. When the system (7-1) is controllable, inequality (7-

6) and (7-7) are satisfied and, consequently, D has a bounded inverse. From a Lyapunov

approach one can show how the operator D could be used to assure asymptotic stability

of the closed loop system. In fact, at this point, one can notice the concurrence of three

concepts: controllability, stabilizability and Lyapunov stability. To show this, the

candidate gain operator for feedback is considered as K = -B* D- 1 . Therefore,

u = -B* D- v (7-9)

The open loop system of (7-1) generates a solution of the form v = eAt vo . The closed

loop system, based on equation (7-2) and (7-9), becomes

v = (A - B B* D-')v (7-10)

v(O) = Vo .

Consider a system with the following evolution equation

= (A B B* D-)y (7-11)

y(O) =V.

where y is in the space V = R', i.e., system (7-10) and (7-11) share a common space.

The open loop system (7-1) generates the semigroup T(t) and the closed loop system (7-

9) with evolution operator (A - B B* D- 1 ) generates S(t). Therefore, the qystem of (7-
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11) with evolution operator (A - B B* D-')* is a generator of semigroup S*(t). Let the

Lyapunov function be selected as the following weighted inner product on Vx(V

2(y) = <y,Dy>v (7-12)

t'

= <y,(f e - At B B* e - A ' t dt) y>
0

ti

= f <B*e-A'ty , B*e-A'ty>u dt > tj 6lyvk• (7-13)

0

Since D is self-adjoint, then the time derivative of 2 becomes

(y) = 2< ,Dy>v

= 2<(A-B B* D-')'y,Dy>-

= 2<A*y,Dy>v - 2<D-'B B*y,Dy>v

.(y) = 2<D A*y,y>v - 2 11B*yl U  (7-14)

where

ti

D A*y = (f e- A t BB* e - A *t A* dt)y
0

t,

f e- A t B B* d(e - A ' t ) dt]
dt( t t

0

Operators B and B* are time invariant, hence,

ti

D A*y =-f eAt BTd (B* eAt) dt,dt e d
0

and
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t d

<:DA*y,y>v -f <-d (B*e-Aty), B*ey>U dt
0> 

dt

t1o d B~eA*ty
f--- - *e-Aty, B*e- y>U dt

20t

I IB*e- Aty IIU + I IB*yl (7-15)
2 2

Therefore, by substitution of (7-15) into (7-14), it can be seen that

. =(y) - -I--B*e-A ti yll -IjB*ylj < 0 (7-16)

From (7-6) it is clear that

IB*e-A*ty A ! 81 1 lR (7-17)

IJB* YIN 6 2 IPyO (7-18)

Therefore .e(y) is not just negative semidefinite, but for finite dimensional systems due

to (7-17) and (7-18), it satisfies the more restrictive condition of being negative definite.

.'(y) _<-(81 + 82) Ilyk (7-19)

From this Lyapunov functional and the results of the Lyapunov's direct method applied

to linear systems, as shown in Chapter 3, system (7-11) can be found exponentially

stable with the

iie(A *-D -'BB *)tII <e a t for some a > 0 (7-20)

Therefore system (7-10) which is the closed loop system with the control law of equation

(7-9) is exponentially stable, i.e.,

{ e(A-BB*D-')t 11 = {(A*-D-'BB*)t ii

or from (7-20)

MWI
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jje(A-BB*D-')tj( <e - t for some cc > 0 . (7-21)

Therefore, controllability of a finite dimensional system leads to stabilizability of that

system. However, this relationship does not exist in the case of infinite dimensional

systems, as will be discussed later.

When the condition for existence of feedback gain operator K is given, it is often

required that the system characteristics behave in a desired manner, namely, the

eigenvalues of the closed loop system being specified apriori. The theorem below proves

the existence of an operator K such that the closed loop system has this placement

property.

Theorem 7.1. Letting the system (7-1) be controllable and operator B=b be an nX1

matrix (single input system), then the closed loop system

v = (A+bK)v (7-22)

V = Vo

has the eigenvalue placement property. This property can be stated as: given an3 n-

tuple of eigenvalues {X1, X2 , .--, Xn}, there is one and only one row vect r

K = [KI, ..., K,] such that the matrix A+bK has the eigenvalues IX2 . ... , \n.

Clearly, this theorem can be extended to the case of a general nXm B-matrix. The

proof of theorem 7.1 is given in [731.

In general, stabilizability of system (7-1) does not guarantee controllability of this

system. The counter example would be a homogeneous stable system, which is clearly

uncontrollable. However, the pole placement property, i.e., being able to select the

eigenvalues of the closed loop matrix A+BK, implies controllability.
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The pole placement property of controllable systems can be considered as an

algebraic property of matrix operators. From this property it was shown that for a set

of selected eigenvalues of system (7-2) there exists at least a matrix K, provided the

system is controllable. This means that the characteristic equation

det [XI - (A+BK)] = 0 , (7-23)

for the given X,'s, i = 1,2,...,n, would result in a set of n characteristic equations which

lead to determination of K, provided system (7-2) is controllable. Therefore, the

controllability of the pair (A,B) is the necessary and sufficient condition for matrix

(A+BK) to have eigenvalues as specified and this property is independent of (A+BK)

being an evolution matrix. In the literature, the pole placement of general matrix

(A+BK) is not usually looked upon in the framework of controllability of the pair (A, B).

Despite the fact that placement property of eigenvalues of matrix (A+BK) and evolution

system (7-2) is the same, here this distinction is made because of the usage of this

property applied to the matrix (A+BK) in derivation of stabilization of a class of DPS.

These views of stabilization in finite dimensional systems set a basis for their comparison

with infinite dimensional systems.

Stabilization of Infinite Dimensional Systems

If the abstract evolution equation of an infinite dimensional system given in the

form of equation (3-4) with evolution operator A generates a semigroup T(t) which is not

asymptotically stable, then a control u will be applied to the system and the

nonhomogeneous system can be represented by

=Av + Bu (7-24)
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where

veV = L2([O,e],E')

uEU = L2([O,fe],E m )

v(0) = v.

The state v and control u are vector functions of spatial domain xe[0,e]. Hence, they

belong to n and m-tuple function spaces V and U, respectively.

The control system is then stabilizable if there exists an operator K : V - U such

that the control u = Kv generates the closed ioop system

=(A + BK)v (7-25)

v(O) = v.

veV

and the closed loop evolution operator (A + BK) is the generator of an asymptotically

stable semigroup S(t).

Unlike the finite dimensional systems, approximate controllability of system (7-24)

does not guarantee stabilizability. However, if the system is exactly controllable as

discussed in Chapter 6, then

JjC*u zl U  ! 6izl z  (7-26)

For the linear system (7-24), this condition can be represented as

IB* T*(t-t)zlb 6 IIzIIz , (7-27)

for every tieR+ and 0 < t < tj. From this condition the norm
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ti

f lIB*T*(t 1 -t) zII1 dt (7-28)
0

will satisfy the following

ti

f IB*T*(t-t) zI11' dt > ,3 1lzl11 (7-29)
0

for some 3 > 0.

The following can be written from the properties of semigroups T and T*.

T(tj-t) --- W(tj) T(-t) --- T(-t)W(tl)

T*(tl-t) - T*(tj) T*(-t) = T*(-t) T*(tj)

Therefore,

ti ti

f 1B*T*(ti-t)z1$dt - f<B*T*(-t) T*(ti)z, B*T*(-t) T*(tl)z>udt
0 0

Similar to the treatment of finite dimensional systems, it has been determined that

ti ti

fIIB*T*(t,-t)z112dt = <(fT(-t)BB*T*(-t)dt)T~z, T*z>u • (7-30)
0 0

If an operator D is considered as

ti
D(') -(f T(-t)BB*T*(-t)dt)(.

0

then D(-) is a self-adjoint operator and from (7-29) and (7-30)

FD T*(tl)z, T*(tl)z(>7u -311zl l tw ed-31)

From (7-31) it follows that D(') will have a bounded inverse.
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If the control action is considered as a feedback control with the gain operator K

K(') = -B'D-I(") (7-32)

then

u = Kv = -B*D-1 (v) (7-33)

Since both operators D(-) and D-'(") operate on a distributed state function and

generate a distributed function, then u is a distributed feedback control. The closed

loop operator of system (7-25) generates a semigroup S(t) and, similar to finite

dimensional case, a Lyapunov functional 2' can be defined as

2(y) - <y, Dy> (7-34)

where y is the state of the following system

k = (A - BB*D- 1 )*y (7-35)

y(O) = V.

yeV = L2 ([O,eI,E")

The closed loop operators of systems (7-25) and (7-35) are adjoint of each other

and (7-35) generates the adjoint semigroup S*(t). The time derivative of Y becomes,

y 2<:DA*y,y>v - 2<B*y, B*y>u

where

i ti

DA*y = f T(-t)BB*T*(-t)A*y
0

Since the open loop evolution operator of system (7-35) is A*, which generates the

semigroup T*(t), where
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d- T*(-t) --- -T*(-t)A*,

dt

then

DA*y T(-t)B (B*T*(-t))dt
0

Finally, similar to the derivations of finite dimensional systems, the following can be

obtained

(y) = -i[B*T*(-tl)yll$ - IlB*ylj : 0 (7-36)

Due to the exact controllability and (7-27), the right hand side of (7-36) is bounded from

below in the state space V, i.e., . ' is negative definite with respect to IlylI. Hence, the

system (7-35) is asymptotically stable. It can be seen that

JjS*(t)1I < Me-- t  for some M> 1 and c e> 0

Since IS(t)I = 1S*(t)I, then the same statement applies to the system (7-25).

Therefore, the exact controllability is a sufficient condition for stabilizability of a

general distributed parameter system. However, the exact controllability condition, as

used in (7-27), is often very difficult to satisfy for general distributed systems.

Stabilization of Symmetric Hyperbolic DPS

The general class of systems studied in Chapter 5 are represented by

+ A, + 0 0 (7-37)

v(x,0) =v. , v(o,t) =0

where veV([0,e],E 5 ) and matrices A, and B1 are denoted by A and B in Chapter 5. This
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class of systems, with A, being symmetric, shares a common form with the linearized

model of the MPD system studied in this chapter. Let A1 (x) possess eigenvalues of the

general form: 'I(x) 5 \ 2 (x) ... 5 ,p (x) < <Xp+I(x) < ... < \,n(x). The

eigenvalues show the directions of the characteristic lines of partial differential equations.

In addition, there exists a continuously differentiable matrix O(x), based on the system

eigenvectors such that 0-'(x) A(x) O(x) - A(x). If one considers a new set of states w,

such that

v O(x)w,

then the substitution of v into (7-37) results in

O(x) + A,(x)O(x) +N- A(x) + B O(x) w = 0

+ 0-(x)Al(x)O(x) - +01A,(x) + BO(x) w =0

Therefore, one can conclude

0 ̂w Ow+ A(x) 0 + 3(x)w = o (7-38)

Since A(x) is a diagonal matrix of the system eigenvalues, and since X' to XP are

negative and Xp+ 1 to X, are positive, then A can be decomposed as

A= ,0 A- = diag(XI 1 ... ,\) (7-39)

0~ A+ = diag(X1 l

The corresponding decomposition can be applied to the states

W=[w (7-40)
w

+
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Therefore, (7-38) can be reduced to a set of ordinary differential equations of the

following form:

dwd _o~wk wk _k 'dx ' Dwk
+k +[- X 1-- k - 3 k(X)w (7-41)

k - 1,2,...,n

where wk is the kth element of the vector valued function w. Moreover, Xk represents

the direction of the kth characteristic line, hence d(.) is the directional derivative along
dt

the corresponding characteristic line. On the right hand side of (7-41), Ok is the kth row

of the matrix valued function O(x). The set of n ordinary differential equations (7-41)

are coupled by the term Bk(x)w. Initial values for t == 0 can be written as

w(x,0) = w. eL2 ([0, f;E*)

Considering the boundary conditions at a point on the boundary x = 0 and t = to,

as shown in Figure 7.1, one finds the characteristics with negative and positive

eigenvalues arrive at that point with negative and positive slopes, respectively [47]. The

"incoming information" consists of values of wk associated with characteristic line

Ck(0,to) with negative slope for k = 1,...,p. The "outgoing information" consists of

values of wk associated with the positive slope characteristic Ck(o, to), k = p+l,...,n.

Hence, along the boundary x = 0, the values of w+ should be known. It is clear that

along the boundary x --e, the orientation of characteristics will be reversed and hence

the values of w- should be known. When system (7-37) is unstable it can become

subjected to stabilization with addition of a control action u, such that the resulting

nonhomogeneous system will have the generic form of the abstract system (7-24)
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Figure 7.1 Characteristics configuration at x --- 0 and t -- to.
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-Av + Bu

where Av = -Al -- - B1v

v(O) = V.

The input operator B depends on the way that the control is interacting with the

system.

In general, the system of equation (7-37) is assumed to be stabilizable by some

form of feedback control as u = Kv, where K: v --- u. Hence, the operator A+BK

would be an infinitesimal generator of an asymptotically stable semigroup. If one defines

a Lyapunov function as 2 = <v,v>, similar to (5-39) with S = I, then the following

would result:

oVTAv I + f vT2B, + 2BK vdx (7-42)
0 0

From transformation v = O(x) w we have

e e
vTAiv I = wTOTA, Ow I wTAw (7-43)

o 0 0

where

WT .kw = [-IT [, 0 ] -

w+ 0A. k 
+

e T e T e
wTAw I =- w.,-w-I+ w++Vw+ (7-44)

00

At x = 0, and at x = f, w+ and w-, respectively, must be known or given from the

boundary conditions, i.e.,
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w+ (o,t) = Dow-(o,t) (7-45)

w -(f,t) = Dew+(t,t) (7-46)

Hence

wTAw I f w T(e,t)A.(e)w (e,t) + w T (e,t) D T'A- (e) De w (e, t)
0

-wrot)A-(o)w-(o,t) -wrot)Dow  oDw(~)

To guarantee stability in the sense of Lyapunov, the following must be satisfied:

--w* T (e,t) [A+(e) + DTA-(t)DeJ w (e,t) < o (7-47)

w- (o,t) [A-(o) + DoAi(o)Do] w(o,t) 0 (7-48)

In the case that w+(o,t) = 0 and w-(e,t) - 0, (7-43) reduces to

If
wT Aw I = w+(e,t)T A+ ()w+C(e,t)

0

-- fw-(o,t)T A - (o)w - (o,t)]  _ 0 (7-49)

Hence, -vTA v I < 0.
0

Another condition to be satisfied is that the following matrix should be negative

definite

MC -- -- 2B1 + 2BK : negative definite (7-50)

Therefore, by using a proper feedback gain K, such that conditions (7-49) and (7-50) are

satisfied, the Lyapunov functional leads to

wc < <v,Miv> < ---st (177 (7-51)

which results in the asymptotic stability of system (7-37). If Mc is negative definite, then
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the supremum of its eigenvalues must be less than zero. Since the operators ' and

B1 are only matrix functions of x, stabilization of the infinite dimensional system (7-37)

reduces to the pole placement property of a finite dimensional matrix. As mentioned

earlier in the discussion of finite dimensional systems, if the pair (A,B) is controllable,

then there exists a K such that the eigenvalues of A + BK can be placed in desired

locations. Therefore, there will exist at least a matrix K such that M, is negative

definite if and only if the controllability matrix C, below,

r 9 A, 1 [A, 12 [Al -
C 2B, 2 [- 2B, B, 2 [- 2B], 2 - - 2B, B

(7-52)

has a full rank. In the case of the MFD thruster, where A, is given by (5-32) and B1 is

given by (5-38), its control is a distributed (body force) type input. Addition of the

distributed control inputs can be achieved by imposing a perturbation to the equilibrium

controls in equations (5-27) to (5-29). Hence, the control vector in (7-24) will be defined

as

u = ] (7-53)
U2

Therefore, the input operator B, which couples u to the system of (7-24), will be

calculated as
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0 0
1

B PeV' 0
B Pe RT,(7-54)

-ue 1

From the values of A, and B1 given by equations (5-37) and (5-38), respectively, and B

given by (7-54), one can construct the controllability matrix for the MPD model. A

ue

detailed computation leads to the condition that - and -Ue should not be zero

simultaneously so that the system of the MPD model would be stabilizable. This

indicates that although there is not a formal input term influencing the density evolution

equation (5-27), i.e., the continuity equation, it is possible to control and stabilize the

density, velocity and temperature of the plasma with the input controls appearing only

in the momentum and energy equations.

Stabilization of DPS Represented by Contraction Semigroups

An important class of distributed parameter systems which covers a wide range of

hypo-eliptic and structural systems are discussed in this section. Consider a

nonhomogeneous infinite dimensional system represented by the evolution equation (7-

24), where the open loop evolution operator A generates a contraction semigroup T(t),

defined in Chapter 3 as IT(t)ll < 1. From the Hille-Yoshida theorem it has been

determined that the generator A must be dissipative with respect to an appropriate

norm so that this contraction exists. For those dissipative generators with iT(t)'i < 1

the evolution process is already asymptotically stable and stabilization has no meaning.

However, for the case where <v,Av>v = 0 and IIT(t)1 = 1, the dynamical system is not

asymptotically stable and stabilization can be addressed. This category of problems
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contains a majority of structural systems with negligible damping which are often

subject to undamped oscillations. Consider the system (7-24)

=Av +Bu

v(O) =Vo

vEV

which is subjected to the following condition: <Av,v>v = 0.

Assuming a Lyapunov functional Y' on a set G, where the positive orbit of the system is

contained in G, then

= <v,v>

-= 2< ,v>v = 2<Av,v>v + 2<Bu,v>v

2<Bu,v>v = 2<u,B*v>u (7-56)

This leads to construction of a feedback control u, where

u = -B*v (7-57)

Hence,

= -2['vii1 <0 (7-58)

Since ." is negative with respect to the norm in the control space U, no further

implications can be made about the negative definiteness of "£? in terms of the norms in

state space V. This means that the Lyapunov direct method is not applicable to such

systems. However, from the invariance principle it can be concluded that if the positive

orbit of the system is compact, then the closed loop system S(t)v -- M as t --*,c,

where M' is the largest invariant set on which . = 0. The motion of the dynamical
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system is asymptotically stable and S(t)v -- 0 as t -- 0 if M' = {0}. Therefore, it is

sufficient to-add approximate controllability in order to arrive at stabilizability of this

system, as shown by [381 in the following theorem:

Theorem 7.2. Let A in system (7-24) be the infinitesimal generator of a contraction Co-

semigroup T(t) on V for t > 0. If (i) for every yeV, S(t)y remains in a compact set of V

where S(t) is the semi-group generated by closed loop operator as described above, and

(ii) (7-24) is approximately controllable, then S(t)y - 0 as t - oc, i.e., system (7-24) is

weakly stabilizable.

Proof. If C = A - BB* is the closed loop operator with the control law (7-57) and

S(t) is the semigroup generated by C, then C* = A* - BB* is the generator of S*(t) for

the following system

C*y (7-59)

y(O) = V. yEV

Consider the Lyapunov functional

- = <Y,y>v

then .---- 211B*yll = -21B*S*(t)vo l1, similar to (7-58). From condition (i) and

< 0, it can be concluded that S*(t)v o -M' as t - x, where M' is the largest

invariant set on which . = 0. From condition (ii) it can be concluded that M =V 0

Let meM + and define z(t) as

t

z(t) = f S*(s)m ds (7-60)
0

Since C* is closed, z(t)ED(C*) = D(A*) C V, and z(O) = 0, then
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i(t) = (A* - BB*)z(t) + m (7-61)

from the-definition of M+ , it follows that

= 21lB*S*(t) mlb = 0 (7-62)

or

B*S*(t) m = 0, for all t > 0 (7-63)

This implies that B*[z(t) - z(O)j = 0, or

B*z(t) =0 (7-64)

Hence,

= A*z(t) + m (7-65)

and

t

z(t) = f T*(s) m ds (7-66)
0

From (7-64), it can be concluded that

t

B*z(t) = 0 = f B*T*(s) m ds (7-67)
0

Therefore,

B*T*(s) m = 0 (7-68)

However, if system (7-24), by assumption (ii), is approximately controllable, then

B*T*(s) m = 0 implies m = 0

This indicates that every element of the invariant set M+ is zero. Therefore, from the
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invariance principle, S*(t)vo - 0 as t - 00. Thus, S(t)vo - 0 weakly in V as t -- .

The analysis in this chapter indicates that, unlike the case of finite dimensional

systems where controllability implies stabilizability, for infinite dimensional systems such

an implication is not appropriate. In general for infinite dimensional systems, exact

controllability provides sufficiency for existence of a stabilizing control. The special case

of an infinite dimensional dynamical system which has the characteristics of a

contraction semigroup is considered in the last section of this chapter. In this case,

approximate controllability along with compactness of the closed loop motion provided

sufficient conditions leading to the existence of a stabilizing control. It can be shown

that under the condition of contraction, the compactness of closed loop motion would

imply the close range of the control operator C,,. This in turn implies that the

approximate controllability would lead to an exact controllability.
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CHAPTER 8 - SUMMARY AND CONCLUSIONS

A summary of the research presented in the previous chapters and the results are

reviewed in this section. The major conclusions drawn from the study are presented,

and some recommendations for future directions are described.

Summary

The semigroup properties of states of dynamical systems were presented. The

extension of the Lyapunov direct stability method for distributed parameter systems was

presented. It was shown that whenever the Lyapunov functional subject to the direct

method or the equilibrium point does not exist, then asymptotic behavior of the

distributed parameter systems can be predicted by extension of the invariance principle.

A simplified model of the MPD thruster using conservation laws and Maxwell's

equations was derived. This model was used for stability and controllability analysis of

the MPD systems. The theorems and concepts of the stability of DPS was applied to a

parabolic model of a magneto-plasma dynamic system, subject to perturbations about its

null equilibrium velocity.

Asymptotic stability of the transverse and longitudinal modes of motion were

derived. Similar treatment was applied to the case of the MPD accelerator with nonzero

equilibrium flow velocity. The stability of the linearized model was derived based on an

equivalent norm. In addition, the stability of the original nonlinear DPS model was

investigated and derived.

The concepts of controllability and observability for linear time invariant DPS

were compared with the corresponding concepts for finite dimensional system.



- 126-

Fundamental differences between these two types of systems from controllability and

observability points of view were described.

The stabilizability of DPS in the absence of asymptotic stability was analyzed and

the resulting theorems were applied to a class of linear symmetric hyperbolic systems. It

was shown that if the system is exactly controllable, then existence of a stabilizing

distributed control can be achieved. For a special class of DPS where states of the

system form a contraction semigroup, stabilization was proven based on the invariance

principle and approximate controllability.

Conclusions

Following items are concluded from the research presented in this manuscript.

In general, Lyapunov stability theorem provides sufficient condition(s) for the

stability or asymptotic stability of systems. In the case of systems represented by a large

number of partial differential equations, Lyapunov's method provides an applicable

process for stability analysis as opposed to the spectrum analysis of high order

characteristic equations with the presence of wave number in the characteristic equation.

Moreover, in infinite dimensional systems, negative definiteness of supremum of the

spectrum provides only the necessary conditions for asymptotic stability. However, the

extra condition from the spectrum determined growth assumption should exist to

guarantee the existence of asymptotic stability.

In a case that asymptotic stability does not exist, then exact controllability

provides a sufficient condition for the stabilizability of the system. ! general, exact

controllability is very difficult to obtain and has been proven only for a few special cases.

This study has shown that the stabilization of linear symmetric hyperbolic systems with
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distributed control is plausible without the need for exact controllability.

The results of this study can be applied to more elaborate models of MPD

thrusters, and more definite answers on the subject of system observability and

stabilization can be derived.

Recommendations

The following issues are related to the materials discussed during the course of this

research and are recommended as topics for future research in continuation of this study

on distributed parameter systems:

1. determination of different types of strategic points for general classes of DPS and

their applications to sensor/actuator optimal locations,

2. closed-loop robust control of DPS with respect to noise and random excitations,

3. effects of delay in DPS and robust control design for delayed DPS,

4. stabilization of nonlinear structural systems based on DPS models,

5. experimental investigation of the proposed stabilizability technique.

6. implementation of the results on an actual MPD thruster at one of the Air Force

Laboratories
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Appendix A: Proof of Theorem 3.7

Given any e > 0, and without any loss of generality, let e < r. Defining

ci(e) _ in! and noting that ce >2(v.) + f(e), it is clear that the ball of radius E

at v. i.e., B,(ve) contains a disjoint component G, of the set (veV I Y(v) < ci such that

v. e Ga. Since .2': V - R is continuous, G, is an open and positive invariant set and

there exists b(c) > 0 such that B6 (v.) C Ga. Therefore, given any v0 E B6(ve) C G,, the

positive orbit is contained in Ga, i.e., "f(vo) C G. C B, (ve). Therefore, the point ve is

stable.

With a and 8 defined as above, and 0 < E <r, consider any fixed point

vo e B6(v.) C G,. Theorem 3.6 implies that .2(T(t)vo) is non-increasing on R'.

Therefore, as t -- oo, .g(T(t)vo) --+ inf .2(T(t)vo) =/0(v.). Clearly, a _/3 > ,2'(V.)

because .2(v) > .2(v.) for all v e G, C Br(v.). Either /0 must be .Y(ve) or

'Y(vo) n {veG. I .2(v) </0} for /0 > .2(v.) is empty. In the latter case, continuity of .2

implies that there exists a v > 0 such that -y(vo) n By(ve) is empty, assuming that

/0 # .2(ve) and ._'(v) < -g(d(v,ve)) for all vEGa C Br(v). From the hypothesis, g(') is a

monotone function, hence g(v) > 0 and

t

.2(ve) < .(T(t)vo) = Y(vo) - f g(t,)
0

< (Vo) t g(V) - O as t -. c

which is impossible. Hence, 3 - -R(ve) and .2(T(t)vo) -- .Z(ve) as t - -c. This implies

that f(d(t(t)vo,ve)) -- 0 as t-- cc. Since f is a monotone function, T(t)vo - ve as

t -* cx and v. is asymptotically stable [26].
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Appendix B: Proof of Theorem 3.11

If V is complete and -y(v) is precompact, then Q(v) is nonempty and invariant;

moreover, d(T(t)v, n(v)) - 0 as t -- oc. Assuming that y(v) C G, one has

fl(v) C (v) C d. If y(v) is not precompact, (v) may t, empty. In this case, the

theorem is obviously true but meaningless. Hence, the case that 11(v) is nonempty is

considered. Since 2(v) < oo and 2(T(t)v) is nonincreasing, then 2(T(t)v) has a finite

value for teR . This implies that Y - 3 < oo as t -- oo, where 3 = inftR-2(T(t)v).

Since fl(v) is assumed to be nonempty, Q(v) C (v) C G, and since 2(v) is continuous

from the definition of fn(v), it follows that 2(z) =--3 for every z E il(v). Furthermore,

since 11(v) is positive invariant, 2(z) = 0 for every z e f(v) and proof is complete [261.
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Appendix C: Derivation of Model for MPD Systems

The plasma dynamic equations for this system consist of Maxwell's equations,

Ohm's law, conservation of electric charge, equation of state (ideal gas law) and a set of

mass, momentum and energy equations [70]. In derivation of these equations it is

assumed that the bulk properties of the gas (plasma) are shared by all species contained

in the plasma.

Maxwell equations:

X N E+

VXE-V~ot

V E -Pe
e

Ohm's law:

Ji = [Ei- + ( '( X H)I + PeU*i i z direction index x,y,z or xl,x 2 ,x 3

Conservation of electric charge:

&Pe 3 A
+ \ -- 0 j .4 direction index

Equation of state (ideal gas law):

P =RpT

P = thermodynamic pressure
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Conservation of Mass:

E (pu*j) = 0
i-I

Conservation of Momentum:

Du*i aPt 3 oTij
P--- =+ E + Fe + Fg1 + F,

where,

P = sum of thermodynic pressure and radiation pressure, the latter is negligible.

Fe; Pe i + Ae(J X H)i i x,y,z or x 1 ,x 2 ,x3

Fg, - gravity force per volume, negligible.

lu*i
r a xj

F= = collisional forces, negligible.

Energy Equation:

aopem 3 9pjm uj ou*jPt 9u*jrij aQj

at xj ax, axj + J+

where em = total energy per unit mass - cT.

Qj = heat flux in direction j.

In this model, it is assumed that the plasma is originally at rest with the pressure

Po, temperature To, and density p,. An external uniform magnetic field Ho is applied to

the system, where

H, -iH, + H +k0.
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There is no electric field applied to the system. Plasma is perturbed by a small

disturbance and, as a result, the state of the system is a combination of the stationary

(equilibrium) part and the perturbed portion. The velocity vector for the basic flow is

zero. Therefore,

u* =-i u(x,t) + jv(x,t) + k w(x,t)

However, an assumption is made that the variations of variables are only functions of

one spatial dimension, x, and time. Therefore, instantaneous pressure, temperature and

density can be written as

P P0 + P'(x,t)
T =To + T'(x, 0

PTO + (x,t)

Electric and magnetic fields can be represented as

E = i Ex(x,t) +j Ey(x,t) + k Ez(x,t)

H= H + h(x,t)

=i [H, + h,(x, t)] + j [Hy + h(x, t)] + k hx,t)

Current density J and net electric charge Pe are

J = J(x,t), Pe = Pe(X,t)

The one-dimensional assumption results in: 2(') - 0, D() 0.

Inserting the above simplification into the set of general dynamic equations, the

following describing equations can be derived:

Maxwell's equations:
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J x + E 0 (C-i1)

J7 + E = - (C-2)
at a

J, + fE 3h (C-3)at ax

ahx
--- at -0 (C -4)

Aah, aE. (C-6)

Generalized Ohm's law:

Jx = oEx - p. wHy) + Peu (C-7)

Jy =o (Ey +/pe wH-) + pev (C-8)

J, = U(Ez + AeuHy - /IvHx) + PeW (C9)

Conservation of electric charge:

- -Pe 0 (C-10)

The equation of state for perturbed variables is

II I

P' p T= - + where P, = poRTo (C-11)

The linearized continuity equation becomes:

Op O + p = 0 (C- 12)

The linearized equations of momentum are:
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PO -O + -e J, Hy + PE (C-13)

Po ' A -2 + p Jz H x + Pe Ey (C-14)

PO = A + Ae(Jx HY - Hx Jy) + PeEz (C-15)

It is assumed that the nonlinear perturbation terms are negligible in comparison with

the linear terms. Therefore, the energy equation becomes

PO p0RT 0 -(9 + K±-Tw  (C-16)Po~v --= --PoRo- -- t- ox2

Decoupled Modes of Motion

In the case of a neutral plasma, i.e., p. = 0, the number of ions and electrons per

volume of plasma are nearly equal. For this case, if one considers the fact that

Oh1  oh1A 0 --h = 0, then it is possible to distinguish between two modes of wave

propagation: transverse mode (z-direction) and longitudinal mode. In the transverse

mode, the states are found to be h, and w, and the state equations can be formed from

the reduction of equations (C-i), (C-2), (C-6), (C-7), (C-8), (C-10), and (C-15). The rest

of the equations can be reduced to the form state equations for the longitudinal mode.

(i) Transverse Mode

The magneto-gas-Aynamic assumption results in an insignificant magnetic

induction effect in Maxwell's equations from the terms carrying variations of

electric field with time. This is due to the fact that nondimensional parameters

tou* Eo
Rt  --- and RE -- H are of the order of one or smaller, and

,e i I I I
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U *2 *

Re 2= u*'v e «1 [70]. The resulting equations are

, PH -- + Hx -j- (C-17)

w _ 2w V, 28h.
i- - + H. ox(C-18)

where v= and Vo = 70 H," The parameter V1 is defined as the x-
CjI1e V PO

component of the speed of the Alfven wave.

(ii) Longitudinal Mode

The state equation for this mode can be reduced to

Vh - H 2 h + H (C-19)

82 \ av V2h (C-20)

aT p" + r"1 + u Vy ahy (C-21)

=-. -a (C-22)

T K Y2 T" R au (C-23)
poc,, a2 c, ax

-- , Vy = Hy. The parameter Vy is defined as the y-

where p t e' o

component of the speed of the Alfven wave.


